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Abstract— This paper describes early work on
object detection in maritime environment using long
wave infrared (LWIR) images. The focus is on objects
floating on water surface or are visible from the
water surface. The detection is achieved by the
semantic segmentation that divides the scene into
three categories - object, water and sky. The LWIR
images are less susceptible to water dynamics and
lighting conditions. The results obtained indicate that
this direction is promising for further research.

I. INTRODUCTION

The unmanned and autonomous surface vehicles
(USVs/ASVs) have wide applications in the
maritime environment as they reduce human efforts
and cost in periodic and long haul tasks on the seas
such as surveillance, water quality and environment
monitoring, and transportation. This rise of surface
vehicles (SVs) has highlighted the significance of
improved maritime object detection and tracking
mechanisms. This is because to navigate the
water autonomously, the SVs must first detect
objects in the path and work around the objects
without collision. The object detection is done
by employing various sensors. Historically, radar
was used to detect objects. Then the community
started experimenting with optical cameras. During
this time, objects were detected by using classical
image processing algorithms. However, for past
few years, the detection and tracking with the aid
of optical cameras has gained significant traction.
This is because of the excellent performance of
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deep learning algorithms in image analysis [1]
coupled with availability of ultra-fast hardware
namely graphics processing unit (GPU). However,
this environment poses a different set of challenges
as against the land, namely - dynamic water
background, visibility impact due to conditions
such as rain, fog or darkness, minimal availability
of static cues, camera that’s always subjected to
wave motion, reflections and glitter caused in water
due to sunlight, detection of objects at horizon
etc. As a result, the existing algorithms need to
be tailored and new approaches considered for
the maritime environment. A lot of the maritime
research [2], [3], [4], [5], [6] thus far has tried to
adapt the algorithms that are typically used in the
vehicle or face detection domain. These algorithms
typically make use of electro-optical images and
some of these approaches have given remarkable
results. However, research focused on thermal
images has received relatively less attention.
Although thermal images, more specifically, long
wave infrared (LWIR) camera images (wavelength
range: 8-15 µm) contain relatively less information
than color images, they come with their own set
of advantages as well. Infrared (IR) images fair
much better than optical images in poor lighting
conditions when the lack of visible light naturally
decreases image contrast. Reflections caused due
to water and sun glitter are problems native to
the maritime environment for which IR images
do a better job than the traditional optical ones
because IR images are less susceptible to water
dynamics. Another major obstacle that is peculiar to
the maritime environment is the sea-sky boundary.
Determination of this boundary reduces the search
space significantly. However, it is difficult to
determine its precise location under various weather



Fig. 1: Multi-sensor object tracking system, image based on [8]

and lighting conditions. It is a complex problem
and thermal images may assist in providing more
alternatives to tackle the same. Recently, Schöller et
al. [7] has shown that deep learning algorithms can
be applied to thermal images as well. Their work
was related to predicting bounding boxes around
the objects in the water. In this paper, we present
our recent work on using deep learning algorithms
on thermal images in the maritime environment.
We use semantic segmentation for training and
predicting the navigable surface. Our team has
been working on fusing data from multiple sensors,
Clunie et al. [8] has demonstrated an architecture
combining radar, lidar and optical cameras to detect
and track obstacles. Addition of an IR sensor will
bring new capability to the architecture as shown
in Fig. 1.

This paper has been organized as follows.
Section II describes the hardware and image
setup mechanism. Section III describes various
experiments done on IR images. Section IV
describes the early results and comparison with
the corresponding equivalent optical images. We

conclude by identifying problems and the future
steps.

II. SYSTEM SETUP
The system consists of a small autonomous

boat, R/V Philos as shown in Fig. 2. It has
3 electro-optical (EO) cameras and 2 forward
looking infrared automotive development kit (FLIR
ADKTM) cameras. The FLIR cameras have
resolution 640 x 512 pixels and have 75 degrees
field of view (FOV). The output of the FLIR can be
saved in the form of compressed 8 bit PNG image
or 16 bit TIFF format. The videos were recorded
in the Charles river near Cambridge, Massachusetts,
USA in the months from July-October 2020 under
various weather and traffic conditions.

III. EXPERIMENTS
A representative sample of 100 IR images

were selected from MIT dataset [10]. These
images were annotated manually using a semantic
segmentation tool. Recently ‘water-obstacle
separation and refinement’ (WaSR) [2] had
produced excellent inference results on the



‘Marine Obstacle Detection Dataset’ (MODD-2)
[3]. This dataset consisted of challenging optical
images in marine environment. WaSR was trained
on ‘Marine Semantic Segmentation Training
Dataset’ (MaSTr1325) [11] image dataset. WaSR
[2] divided the pixels into 3 categories - water, sky
and obstacles. Because of its superior performance,
we chose WaSR [2] architecture to train and to run
inference on the IR images. The inference produces
an image with a mask. In following segmented
images, yellow indicates object, turquoise indicates
water and dark blue indicates sky.

A. Inference without any retraining

a) WaSR [2] was trained on optical images
in maritime environment so we decided to run
the inference on our IR images by using WaSR
[2] model as-is. Since the IR images consist
of a single channel and the WaSR [2] model
requires three channels corresponding to a color
image, during pre-processing step, we converted
the single channel gray-scale images to equivalent
color images by copying the value in remaining
two channels. The inference on sample IR images
is shown in Table. I, second row.

b) For comparison, we are also showing the
results obtained by the same model on some
colored images. As can be seen in Table II, second
row, the segmentation results obtained on colored
images are better than obtained on IR images.

c) Next, we converted these color images to
gray scale images and again to color images. By
doing this conversion, all the color information is
removed, and they become similar to IR images.

Fig. 2: R/V Philos System [9]

TABLE I: Inference on IR images using WaSR
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Since WaSR [2] model operates on color images, it
requires three channels and hence gray scale images
need to be converted to color images. The output
segmentation masks obtained on these images are
similar to b), still better than a). The inference is
shown in Table. II, fourth row.

B. Retraining WaSR [2] with its own dataset
converted to gray scale

We decided to retrain WaSR [2] on gray
scale images because the IR images are gray

TABLE II: Inference on optical images using WaSR
[2]
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TABLE III: Configuration of experiments

Name Number of
images

Batch
size

Number of
iterations Image resolution

WaSR [2] + training
on MaSTR1325 [11]
grayscale images

1325 3 10050 256 (w) x 192 (h)

WaSR [2] + training on IR
images [10] 88 2 10050 320 (w) x 256 (h)

scale images. For this purpose, we converted the
MaSTr1325 colored images to gray scale images
and back to color images thereby removing all
the color information. Then WaSR [2] was trained
on these images and then inference was run on
the IR images. The results of this experiment are
as shown in Table. I, third row. Surprisingly, the
results were not better than Table. I, second row and
in fact, a little worse. Since the mean pixel value
of IR image was 121 which was much lower than
the mean pixel value of gray scaled MaSTR1325
images, 166, we hypothesized that it could be a
contributing factor. However, increasing the mean
pixel value of the IR images (brightening operation)
as a pre-processing step in the inference stage did
not change the outcome.

C. Retraining WaSR [2] with IR images

In this experiment, we trained WaSR [2] on our
IR images. For this purpose, we created our own
ground truth masks of 103 IR images. We split this
dataset into 88 images for training and 15 images
for validation. We used the model weights obtained
from this training to run inference on some of the
images from validation. The training time required
was about 6 hours. As shown in Table I, fourth row,
the results are much better than any of the previous
experiments.

However, when the inference is run on the
IR images from some of the publicly available
maritime datasets [12], the results are not good,
refer Table IV. Since the number of training images
used is quite low, the trained model cannot be
generalized.

Table III summarizes various parameters used
during these experiments.

TABLE IV: WaSR [2] retrained on our IR images
and inference on IR images from public dataset [12]
using these WasR weights
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IV. RESULTS

With 88 grayscale images used as training
dataset, we were able to retrain the WaSR [2]
model such that it produced fair results on the
images from the test set. The recall obtained
on the test images was 0.917 and the precision
obtained was 0.458. The low precision indicates
higher percentage of false positives. The clouds
were incorrectly identified as obstacles. Also it
did not produce any meaningful results on the
IR images from some of the publicly available
datasets. It indicates that further work on the model
is necessary.

V. CONCLUSION

We plan to refine the model further to improve
the precision. During this process, we will also
create our own dataset of semantically segmented
IR images covering various weather, location, and
lighting conditions. The dataset will help in making
the model robust. We also plan to release this
dataset to public for further research. The initial
results obtained during this work indicate potential
of IR sensors as complement to existing sensors to



improve the overall quality of object detection in
maritime environment.
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