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Abstract— This work presents the development and field
testings of a novel active exploration framework for mapping
benthic underwater environments using AUVs. This framework
is based on a decision-time adaptive replanning (DAR) behavior
that works together with a sparse Gaussian process (SGP)
for online environmental modeling and a Convolutional Neural
Network (CNN) for semantic image segmentation. The SGP
uses semantic data obtained from stereo images to proba-
bilistically model, online, the spatial distribution of certain
species of seagrass that colonize the sea bottom forming extend
meadows, and provide a measure of sampling informativeness
to the adaptive behavior. The adaptive behavior (DAR) has
been designed to execute successive informative paths, without
stopping, considering the newest information. We solve the
information path planning (IPP) problem by means of a depth-
first (DF) version of the Monte Carlo tree search(MCTS). The
DF-MCTS method has been designed to explore the state-
space in a depth-first fashion, provide solution paths of a
given length in an anytime manner, and reward smooth paths
for field realization with non-holonomic robots. The complete
active exploration framework has been integrated in a ROS
environment as a high level layer of the COLA2 software
architecture. We prove the effectiveness of the proposed active
exploration framework by providing the results obtained during
field test.

I. INTRODUCTION

Many applications in robotics share the common objective
of exploring an unknown environment for recording data to
represent it. Information Gathering (IG) algorithms guide
such exploration using an information metric which repre-
sents the informativeness of the environment variable under
study in particular locations, and is used to drive the data
recording process towards the more informative spots whilst
minimizing a cost. The methods developed for such explo-
ration are often differentiated by four components: (1) the
technique for modeling the environment; (2) the information
function; (3) the Informative Path Planning (IPP) strategy,
and (4) the adaptive strategy for replanning.

One way to obtain environmental models is applying a
Gaussian Process (GP) fed with the data collected by an
AUV [1]. GP are a powerful nonparametric technique that
can handle a large variety of problems, and have the ability
to learn spatial correlation with stochastic noisy measured
data. The key feature of GP for IG algorithms is their ability
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to handle both, data uncertainty and data incompleteness.
The information function (I) is used to point out the more
relevant spots to visit (or revisit), and it is directly related to
the environmental variable under study. Whilst the authors
in [2] propose the use of an interpolated version of the
GP model predicted variance, most of the methods use
either Differential Entropy (DE) or Mutual Information (MI)
as information function. Nonetheless, using DE results in
lower computation times and higher uncertainty reduction
than using MI when computed from a GP prediction in a
stationary setup [3].

Informative planners define the most informative trajecto-
ries for IG, applying constraints such as the planning time or
the travelling cost. Whilst graph-based solutions are usually
time expensive, they have been used for small state-space
scenarios [4], [5]. In contrast, sampling and evolutionary-
based strategies, have been used for adaptive frameworks,
and have yield high performance. For instance, [6], [3] base
their strategies in modified versions of standard sampling-
based strategies [7], considering the information gain. In
particular, Hollinger et.al [6] presented a rapidly-exploring
IG tree (RIG-tree), that was the base of a further devel-
oped two-step planning process presented by Viseras et.al
[3]. They proposed a solution based on Rapidly-exploring
Random Trees (RRT) and RRT* [8] to find a goal position
providing a high information path under a budget constraint;
using a GP for environment modeling, and DE as informa-
tion function. Moreover, evolutionary-based strategies solve
the IPP problem by means of a path parametrization and
optimization. Hitz and Popovic et al [9], [10] propose the use
of a GP to model the environmental variable and a CMA-ES
optimizer to optimize the path to be followed by the robot,
with a fixed length.

This work is based on the GP modelling described in
[11], yet it extends the latter by developing a novel: (1) IG
framework, (2) decision-time adaptive replanning (DAR)
behavior, and a, (3) depth-first Monte Carlo tree search (DF-
MCTS) strategy for IPP.

The IG framework coordinates the parallel execution of the
data processing, map estimation and replanning modules. A
data processing module that integrates an encoder-decoder
based convolutional neural network (CNN) for image seg-
mentation to discriminate the seagrass from the background,
and a map estimation module build on a sparse GP (SGP) that
generates a predictive model of the environment (in this case,
an stocastic predictive model of seagrass distribution). The
replanning module has been designed using a novel decision-
time adaptive replanning (DAR) behavior for adaptive mis-



sion replanning, integrating a new IPP strategy that consists
in a depth-first (DF) version of the Monte Carlo tree search
(MCTS). The DF-MCTS is a reinforcement learning (RL)
strategy guided by: 1) a value function that considers the
sampling informativeness and the recorded data density, and,
2) by a function that rewards smooth trajectories. Finally, the
proposed framework is validated in field tests to prove the
effectiveness of the method for autonomous exploration of
underwater environments covered with P. oceanica.

The remainder of the paper is organized as follows:
Section II introduces some background about GP models
and RL algorithms, Section III describes the IG framework,
and Sections IV and V describe the developed DAR and
DF-MCTS algorithms, respectively. Section VI describes the
tests performed in simulation and in field and ilustrate the
results. Finally, Section ?? summarizes the conclusions.

II. BACKGROUND

In this section we define the basis of the map estimation
using Gaussian processes, and the basis of the IPP using
reinforcement learning algorithms.

A. Gaussian processes (GP)

A GP is defined as a collection of random variables which
have a joint Gaussian distribution [12]. The random variables
represent the value of the non-observable function value f(x)
at location x. Such function is specified by its mean function
m(x) and covariance function k(x,x′) such that,

f(x) ∼ GP
(
m(x), k(x,x′)

)
(1)

Assuming a linear regression model, f(x) = φ(x)>w,
where φ(x) represents a basis function vector, or kernel, and
the weights w follow a zero mean normal distribution w ∼
N (0,Σp). Since E[w] = 0, f(x) results in a zero mean:

m(x) = E[f(x)]
= φ(x)>E[w] = 0

(2)

In addition, the covariance of f(x) is derived from using the
zero mean weights assumption such that:

k(x,x′) = E[(f(x)−m(x)) (f(x′)−m(x′))]

= E[f(x) f(x′)]
= φ(x)>E[ww>]φ(x′)

= φ(x)>Σpφ(x
′)

(3)

It results in that the GP covariance directly depends on the
basis function vector, the query locations and the variance in
the weights.

B. Reinforcement learning (RL)

The basic idea behind RL is to learn from interaction.
The learning is based on trial and error; in real or simulated
environments. In this work we will use RL in order to explore
the space of possible paths to be executed by a mobile robot,
by interacting with the environment model obtained from a
GP. The selection of the best path to follow is considered a
sequential decision process.

1) Markov decision processes (MDP): MDPs are a classi-
cal representation of sequential decision processes [13], and
are characterized by the Markov assumption: the decisions
taken only depend on the current state. Moreover, such
processes are called Finite MDP (FMDP) when the states
and actions are finite, and Partially Observable Finite MDP
(POFMDP) when the state can not be completely observed.
An MDP is characterized by four main sub-elements; a
policy, the reward signal, the value function and, optionally,
a model of the environment:

• The policy determines the action to be taken from a
particular state.

• The reward signal comprises the goal of the RL prob-
lem, defining the good or bad events to the agent in an
immediate sense.

• The value function estimates how good is for the agent
being in a given state. It considers the total amount of
reward that the agent can expect to accumulate over
the future. Whilst rewards are given directly from the
environment, values take into account the future rewards
of the states that are likely to follow the actual state.

• The model describes the behavior of the environment. It
predicts the transitions between states given an action;
given an state and an action, it predicts the next state
and the reward.

2) State-value function: We represent the IPP as a
POFMDP, in which the sets of states, actions and rewards
(S, A and R) have a finite number of elements, and where
the state can not be fully observed. The state-value function
is defined as,

vπ(s)
.
=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γvπ(s

′)
]
, (4)

, for all s, s′ ∈ S and r ∈ R, a ∈ A(s); where the policy
π(a|s) provides the probability of choosing a particular
action a from a state s. This is the expected return on the long
run. Where γ ∈ [0, 1] is the discount rate. With a γ = 0 the
agent would be myopic, considering only immediate rewards,
whereas with a higher γ values, the agent would have a
stronger consideration on further rewards.

3) Bellman equation: The Bellman equation II-B.3 is
used to find the optimal policy π∗ that provides an op-
timal value function v∗(s)

.
= maxπ (vπ(s)), provides an

iterative expression to find an optimal solution to the RL
problem as k → ∞. This equation can be solved with
either Dynamic programming (DP), Monte-Carlo (MC) or
Temporal difference (TD) methods. DP can be used to in-
crementally compute optimal policies when a perfect model
of the environment is available. However, they require a
fully observable environment. The value update for MC and
TD methods is performed using the expressions 6 and 7,
respectively, where the λ parameter defines the learning rate.
Whilst MC learns after trial, using the expected reward value
Gt, TD learns from guesses, using the discounted value of
the next step vk(s′), it bootstraps



vk+1(s)
.
=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
[
r + γvk(s

′)
]

(5)

MC : vk+1(s)
.
= vk(s) + λ

(
Gt − vk(s)

)
(6)

TD : vk+1(s)
.
= vk(s) + λ

(
r + γvk(s

′)− vk(s)
)

(7)

4) Decision-time planning: Decision-time planning meth-
ods are used to plan a series of decisions from a root state.
These methods use simulated experience from a model to
improve a policy or a value function. Instead of solving
the whole MDP, they focus on solving a sub-MDP. They
plan using the MDP model to look ahead from the current
state. Rollout algorithms are a type of decision-time planning
methods, based on Monte Carlo control. They sample multi-
ple trajectories in a depth-first fashion from a root state. Each
trajectory (or rollout) consists in taking successive decisions
according to a given default policy until a terminal state is
reached. They are used to obtain near-optimal decisions by
taking random samples in a decision space and building a
search tree according to the results. They are useful for AI
applications with large states and action spaces. Moreover,
this kind of methods are a good fit for our applications since
they are anytime, providing always a solution where more
computing power leads to a better performance.

MCTS is a particular rollout method, improved to bias the
growing of a decision tree towards highest valued regions. A
tree is started from a root node, and grows iteratively follow-
ing a Selection, Expansion, Simulation and Backpropagation
steps. Once the search is interrupted, an action of the root
node is selected according to some predefined criteria. For
instance select the action that conduces to the highest valued
child or the most visited child.

III. IG FRAMEWORK

In this section we introduce the framework used for visual
information gathering in benthic underwater environments. It
comprises the execution in parallel of four modules: (A) The
navigation module executes a mission path and continuously
publishes the mission status and the recorded data. (B) The
data processing module continuously generate high level
data from the robot sensors. (C) The map estimation module
provides sequential GP models to represent the environment
using the last processed data available. (D) The planning
module uses the last environment model to generate an
informative mission path with the proposed DAR strategy.

A. Navigation

Navigation includes the low level architecture of the AUV
-i.e. localization, mission control and data gathering-. The
proposed framework has been integrated with the ROS-
based COLA2 architecture [14] [15] for AUVs control,
and can be executed in any robot working with such open
source software. In this work, the execution of the proposed
framework is tested on the Turbot AUV, which is a 1.6m
long torpedo-shaped AUV based on a Sparus II AUV [16].

This vehicle has three degrees of mobility (surge, heave and
yaw).

1) Localization: The Turbot AUV integrates the extended
Kalman filter (EKF) implementation discussed in [17].
Which consists on the fusion of data provided by an inertial
measurement unit (IMU), a Doppler velocity log (DVL), an
ultra-short baseline (USBL), depth measurements and GPS
(if the AUV in on the surface) in a double EKF setup.

2) Mission control: Governs the thrusters setpoints in
order to follow a desired mission path. According to the
COLA2 control architecture, the mission paths can be com-
posed by waypoints or section maneuvers. Our proposed
method builds the mission paths using section maneuvers;
defined by (i) an initial and final position (x,y,z) (ii) speed
and (iii) tolerance . This manoeuver follows a Line of
Sight with Cross Tracking Error (LOSCTE) strategy [18]
to produce reference velocity commands.

3) Data gathering: Consists on recording stereo images
from the seabed and computing their disparity image with the
onboard stereo camera. Fig. 1 shows a sample of the images
gathered together with the stereo disparity image obtained.

Fig. 1: Example of two images gathered during field tests
together with their disparity image.

B. Data processing

The data processing consists in performing a semantic
segmentation of the gathered images using a CNN, and a
projection of their labeled pixels into global 3D coordinates
as segmented point clouds, or spatial distribution data hence-
forth. The semantic segmentation uses the encoder-decoder
based CNN arquitecture VGG16-FCN8. More specifically,
it uses the pre-trained model described in [19], which is
trained to discriminate the seagrass P. oceanica from the
background, in underwater images. Moreover, as proposed
by [11], the last two transposed convolutional layers are
pruned to reduce the execution time at expenses of a lower
output resolution. Fig. 2 shows some examples of gathered
images together with their segmented image and segmented
pointcloud. The segmented pointclouds are generated using
the disparity image, and the transformation of such point-
cloud to the global coordinates frame is done using the robot
localization as described by [11].



Fig. 2: Example of four images gathered during field tests
together with their segmented image and segmented point-
cloud.

C. Map estimation

The modeling of the seagrass spatial distribution involves
two main processes: the sampling of the spatial distribution
data, and the learning of the GP model hyperparameters.

1) Sampling: The objective of this process is: (i) col-
lecting efficiently the processed data in a raw data dataset,
(ii) generating a downsampled samples dataset to be used for
the learning process, and (iii) computing the raw data density
for a set of query locations. The first objective is attained
by a thread that continuously filters the spatial distribution
data; each segmented poincloud obtained during the data
processing stage is downsampled using a voxel filter with
a 0.1m resolution and appended to a raw data dataset. The
second objective is attained by downsampling the raw data
dataset using a grid filter with a given samples resolution.
This process is executed under query and returns the samples
dataset used for environment learning. The third objective
is attained by building a k-d tree [20] using the raw data
dataset and a minimum leaf size of 1.0m. This latter step is
also executed under query, and returns the raw data density
in the query locations.

2) Learning: The objective of this process is to build
a stocastic model of the environment needed to predict
the seagrass spatial distribution in punctual locations. Such
predictions will be further used by the IPP planner to
compute the information richness of visiting a particular
locations. A GP model configuration based in [11] and feed
with the vehicle position, navigation heigh and the Posidonia
data segmented in the previous stage is used to obtain this
predictive model. In [11], Guerrero et al provide an extensive
study for selecting the type of GP and its best configuration
for modeling P. oceanica spatial distribution. Such GP model
configuration consists in an Sparse Variational GP using
MCMC (SGPMC) [21] model with a Matérn function with
scaling factor ν = 3/2, and a beta function to represent
the GP likelihood distribution. Moreover, in this case for
training the GP we use a fixed kernel lenghtscale λ = 30.
This parameter controls the correlation strength between
pairs of samples depending of their distance. Fixing this
hyperparameter permits to control the distance foresight of

the GP model and balance the exploration-explotation trade-
off: increasing λ will result in an increased exploitation of
predicted areas while decreasing λ will result in an increased
exploration, or increased data coverage.

An important issue for learning the environment model is
fixing the R and the induction points density IPD desired.
The higher the R and IPD the more accurate will be the
model. However, it will affect in longer mapping times. In
order to set a bound on the mapping time, we propose to set
the maximum number of samples Nsamples and a maximum
number of induction points NIP used for training the GP
model, and compute such R and IPD using the area A of
the target region as R = ( A

Nsamples
)

1
2 and IPD = NIP

A

D. Planning

The planning module proposed uses the developed DAR
method described in the next section, IV. This module
retrieves the robot localization and current goal, retrieves the
most recent GP model and queries the robot navigation to
execute a planned path.

IV. DECISION-TIME ADAPTIVE REPLANNING
(DAR)

The proposed method consists in the following four key
ideas:

• Building and updating of a network of nodes N that
results in an pre-initialization of part of the content
included in the states and actions considered during
decision-time planning.

• The robot is neither stopped for planning nor obliged to
complete the commanded mission paths. This permits
having the vehicle in constant motion, while being
flexible to execute updated mission paths.

• Selecting an starting point for the next computed path
considering distance to be covered during the planning
time.

• Growing a search tree in a depth-first fashion following
a novel DF-MCTS strategy for decision-time planning.

• Recycling part of the last search tree for successive
planning executions.

A. Algorithm

The main structure of the method is depicted in Algorithm
1. It inputs a target area A, an obstacle region O, a GP model
of the environmentM, a initial state s0, the sampling nodes
density ρ, and the nearest neighbor distances d1 and d2. And
both, the path to execute P and the remaining path Ps0 are
initialized empty. It starts generating a set of sampling nodes
N , and then, the algorithm iteratively: (1) updates the nodes
utility using the newest environment model M, (2) gets the
next initial state s0 if a path P has been previously generated,
(3) gets a path Ps0,sn using the DF-MCTS strategy, and
(4) saves the path. As the robot finishes a section maneuver,
it executes the newest path proposed from the search tree.



Algorithm 1: DAR()
Input: A, O, M,s0, ρ, d1, d2;

1 P ← ∅;Ps0 ← ∅;
2 N ← buildNodes(A,O, d, d1, d2)
3 while ¬stopCondition() do
4 N ← updateNodes(N ,M)
5 if P 6= ∅ then
6 s0 ← getNextInitState(P)
7 end
8 Ps0,sn ← getPath(s0)
9 Ps0 ← getRemainingPath(P, s0)

10 P ← Ps0 + Ps0,sn
11 savePath(P)
12 end

B. Node network

To build the node network, we first generate a random set
of nodes N inside of a given target area A and outside of
given obstacle areas O. The number of nodes n to build is
determined by a desired node density ρ and the area of A.
Then, we build a k-d tree using the locations of the nodes
contained in N for quick nearest-neighbor lookup. The node
network is build by quering the k-d tree for two sets of
neighbors for each node; a first set of nodes N1 located at a
distance d < d1, and a second set of nodes N2 located at a
distance d > d1 and d < d2. Being the distance thresholds
d1 < d2.

The objective is updating the sampling utility at the N
locations. The model M is queried to get the data density
and GP prediction in the N locations. Then, computes the
information gain and utility from the prediction values. The
information gain I is computed from the prediction obtained
with the GP model at the node location. We have considered
two options to compute such information, using either the
differential entropy (DE) IDE 8 or the upper confidence
bound (UCB) IUCB 9functions.

IDE =
1

2
ln (2πeσ2) (8)

IUCB = µ+ 1.96
√
σ2 (9)

Whilst IDE uses the variance σ2 provided by the GP,
IUCB also uses the mean semantic label µ. IUCB provides
increased information values to higher mean label locations,
which increases exploitation (coverage) in such locations
at expenses of reducing exploration in lower mean label
locations. Moreover, instead of using the information gain
directly for planning we propose the use of the sampling
utility. We propose to leverage the information gain I with
the neighboring data density D such as:

U = I ′(1−D′)α (10)

in order to attenuate the utility of areas that do not present a
reduction on the predicted information I , even though they
have been repeatedly recorded (high D). The objective is

to avoid getting trapped in local minima, high information
areas that do not reduce the variance of the GP model,
even if they are repeatedly recorded. This situation may
happen in areas with heterogeneous data, such as meadow
boundaries. Moreover, since the resolution of the GP model
is bounded by the samples resolution value and the induction
points density of Section III-C, recording more data on a
high information location does not implies improving the
fitness of the GP model. I ′ and D′ represent the normalized
information and density values for all the nodes to the range
[0, 1] using a min-max normalization.The α parameter works
as a weight on the density factor, the higher the α the bigger
is the impact of the density D.

C. Next initial state

In order to allow a continuous navigation and a flexible
path execution, we take into account the time expend in
planning in order to set the initial state used for next planning
iteration. The distance between the actual position and the
next initial state s0 has to be larger than a minimum distance
dmin = vmax · tplan, where vmax is the maximum speed of
the robot and tplan is the planning time. The next initial state
s0 used for next planning is selected taking into account the
distance covered by the robot while the planning process is
executed.

1) Reuse tree: For successive IPP executions we use a
part of the last computed search tree T . More precisely, we
keep the tree structure that hangs from the next initial state
s0, from now on called T ′. In order to do so, T ′ is traversed
to update the distance cost, extend the leave states and update
the state values. All these, prior to execute the IPP.

In order to generalize to different target areas, we propose
to set by default the distance budget B to the half of the target
area perimeter, and the neighbor distance N2 to a tenth of
B.

V. DEPTH-FIRST MCTS (DF-MCTS)

Considering the high number of possible states and actions
available in our field robotics application and the necessity
of an online realization, a decision-time planning method,
formalized as POFMDP, has been developed to solve the
IPP problem. DF-MCTS is a decision-time planning method
different from MCTS in one key aspect: it keeps all the states
traversed during the rollout in the search tree. This provides
a faster growth of the tree, and guarantees a solution path of
a given length. The limitation of MCTS for our application
is that whereas MCTS would explore the environment in
a depth first manner, the decision tree grows exhaustively
resulting in a shallow tree if a short planning time is given
or a high discount factor is used.

We propose to solve the IPP problem using a RL-based
algorithm using a finite number of non-fully observable
states. For that end, a POFMDP configuration represents
the sequential decision problem. A state Sk is defined by
an associated node N , a parent state Sk−1, a set of action
candidates A(Sk), a state value V , a distance cost c from
init state, and an orientation θ. The nodes are used to provide



a discrete representation of the possible sampling locations
in the target area. A node N is defined by a north-east
position, a neighboring data density D, an information gain
I , a sampling utility U , and two sets of neighbor nodes NN

1

and NN
2 . The actions are directly associated to the transition

to a given neighbor node. So, the selection of an action
directly means the selection of a neighbor node to be visited
next. Taking a particular action from a given state Sk will
result on the transition to the neighbor node considered in
such action, and in the creation of a new state Sk+1.

The structure of the proposed method is represented in
Fig. 3. Starting from a root state s0, it iteratively selects a
high valued node, expands the tree with multiple rollouts,
and backpropagates the state-values.

Selection Expansion Backpropagation

Fig. 3: One iteration of the proposed tree search algorithm.
The stared state represents the selected state for expansion,
the states with a triangle correspond to the states used for
update the tree values for the expansion and the backprop-
agation steps. The darker circles represent the states whose
values are updated.

A. Selection

First, select a state from the tree Tne to expand, where Tne
includes the non-exhausted states of T –i.e. state containing
non-tested actions–. For the selection we follow a tree policy
based in an ε− greedy method; get a random number r, if
it is bigger than ε (given by configuration) get the highest
valued state s∗ from T , otherwise get a random state. Being,

s∗ = argmax
s∈T

v(s) (11)

B. Expansion

Second, expand the tree following a given default policy.
This step is different from the expansion step in MCTS
algorithms in that DF-MCTS: (a) performs multiple MC
rollouts from the same selected state, and (b) the states
traversed are kept in the tree and are considered for further
tree expansions.

1) MC rollout: Is build by iteratively: (a) search for
candidate actions A(s) to the current state s, (b) select
an action a ∈ A(s) according to a given default policy
π(a|s), (c) perform action a and (d) get next state s′

and reward r, until a distance budget B is exhausted. We
define the default policy π(a|s) with an uniform distribution,
and the deterministic action-state transitions p(s′|s, a) =
1, for all s ∈ S, a ∈ A(s). The execution of action a being
in state s results in a new state s′ located on a neighboring
node position pointed by action a.

2) Action candidates: The set of action candidates A(s)
of a given state s is built when a state is visited for the first
time. It includes visiting the nodes that can be reached in
one step ahead. We build the set of actions of a given state
A(s) checking the nodes network built in algorithm DAR
initialization. In order to get smoother rollout trajectories we
propose the use of two sets of action candidates: A1 and A2

represented in Fig. 4. The set A1(s) includes the priority
actions. The default policy π(a|s) will use the set A1(s) if
it is not empty, otherwise it will use the set A2(s). Besides,
afterwards an action candidate a is used, it is removed from
its action candidate set. As a result from this as the tree
grows some states get exhausted of action candidates and
are removed form the non-exhausted states tree Tne. Such
states will not be longer available for selection.

s0
s

p

N2

N1

A1

Np

d
d

A2

Fig. 4: Two sets of action candidates for a given state s:
A1 = N2 ∩Np and A2 = N2−Np. Where Np includes the
nodes located at a distance d from p and s p = sparent s = d

3) State-value update: The values v(s) of the states tra-
versed during rollout are updated following a MC criterion,
using 12, where r(s) represents the reward generated in state
s.

v(s) = r(s) + γv(s′) (12)

4) Reward function: In order to generate smooth trajecto-
ries we also consider the relative turns between consecutive
states in the reward function. The reward function r(s) is
defined in , where θr(s) is the relative angle between the
orientations of s and its parent state. Since u ∈ [0, 1] (Section
IV-B) the reward will be unitary r ∈ [0, 1]. Computing the
value of the rollouts is a mater of computing sequentially the
discounted sum of rewards.

r(s) = u(s) · cosw θr(s)
2

(13)

C. Backpropagation

Finally, we back-propagate the rollout values upwards. We
use for this a value function based on the TD approach of
Equation 7 in Section II-B.2, the difference is that in this
case we use the mean value of all child states sc ∈ Sc(s)
for the value update.

vk+1(s) = vk(s) + λ

[
r + γ

∥∥∥∥∥ ∑
sc∈Sc

vk(sc)

∥∥∥∥∥− vk(s)
]

(14)



VI. EXPERIMENTS

Here we present results obtained after field testing. The
experiments have been carried out in Mallorca Island, in a
shallow water region with maximum depth of 3.5m to be
able to compare the online estimated maps with the existing
aerial images of the area and assess the performance of
such mappings. The objective of the test was to get a fast
representation of the target area represented in Fig. 5, that
has an extension of 13.558m2. And the default configurations
used for navigation, map estimation and IPP are given given
in the Table I.

Fig. 5: Target area for field testing (13.558m2) on top of an
aerial image from the Instituto Geodesico Nacional (PNOA
2018 campaign 39.534372, 2.590594).

TABLE I: Default configurations for the LOSCTE, GP model
and DF-MCTS

LOSCTE Value
Maximum speed [m/s] 0.5
Minimum speed [m/s] 0.05
Lookahead distance [m] 4.0
Speed transition distance [m] 3.0
Maximum acceleration module [m/s2] 0.1
GP
Model SGPMC
Kernel Matern 32
Kernel scale 30
Likelihood Beta
Likelihood scale 0.5
Optimizer Scipy
Iterations 2500
Max number of samples 2000
Max number of inducing points 200
DF-MCTS
Planning time [s] 15
Information function DE
Alpha (Utility) 1.0
Beta (Reward) 1.0
Discount factor 0.8
Learning rate 0.9
Rollouts number 32
Epsilon 0.01
Number of nodes 20000
Neighbor distance d1 2.0

The mean vehicle speed in the advancing direction re-
sulted in 0.51m/s. And the image segmentation achieved
a frequency of 0.461Hz. Which provided sufficient overlap
between successive segmented pointclouds.

Fig. 6 illustrates the resulting mapping time and coverage
percent. It shows a clear correlation between coverage and
mapping time, which seems to converge to 40s for a 65% of
coverage. A good consequence of this behavior is that at the
beginning of the exploration the mapping frequency is higher,
allowing fast adaptation of the IPP planner to the changing
map estimation. Since at the last part of the exploration the
map is partially known, and the high information areas are
already located, a low frequency can be tolerated.

Fig. 6: Resulting mapping time and coverage percent ob-
tained during an active exploration execution in field.

Moreover, Fig. 7a show the resulting vehicle navigation
and the density of the recorded data on top of a groundtruth
image hand-labeled from an aerial image; the higher density
areas are located on heterogeneous data regions. Looking
at Fig. 7b notice here the distance between the prediction
(purple shaded area) and the groundtruth (black line).

(a) (b)

Fig. 7: (a) Path followed and raw data density obtained
during field testing. The color in the path represents time,
starts in yellow and ends in dark blue. The raw data density is
represented with the green shade. (b) Mean prediction value
with groundtruth contour on top (black) and followed path
(white).

Fig. 8 show respectively the Mean of the Differential
Entropy (MDE) and Standard deviation of the Differential
Entropy (SDE) of the online estimated maps along the path.

Fig. 8: Results obtained in field test. The circles on the plot
represent the six time instants ilustrated in the Fig. 9.



Fig. 9: Representation of 6 different instants during the
execution of the DAR algorithm test A5 and A6. The squares
represent the spatial distribution samples used to train the
GP and the colormap represent the predicted variance map;
blue for low variance regions and yellow for high variance
regions. From left to right and top to bottom the represen-
tations belong to the instants; 1’ 36”, 8’ 33”, 17’ 27”, 29’
49”, 48’ 5”, and 120’.

The MDE provides the mean map information, and is
computed using the variance value of the environment model
prediction V . The SDE provides the standard deviation of the
pixelwise map information, also computed using the variance
value of the environment model prediction V . Both metrics
converge around the minute 50′. The circle marks represented
in this figure point the instant of the representations of Fig.
9. Such figure shows a set representations of the gathered
data and the uncertainty map (GP predicted variance) in six
time instants during the active exploration process.

These results are considered to balance the explo-
ration/exploitation trade-off. The vehicle tends to cover the
entire area during the first half of the mission, and step by
step, it starts focusing in the regions with high variance. As
the estimated map represents better the environment (minute
29′49” in Fig. 8 and fourth step in Fig. 9) the planned paths
focus in heterogeneous data regions.

VII. CONCLUSIONS

The proposed active exploration framework has shown
promising results on field experiments. It can be executed
online and provide high informative paths. Whilst it provide

a fast reduction of the estimated map entropy, further exper-
iments and comparisons with other methods would provide
a more solid proof of the proper performance.
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