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Abstract— The underwater environment poses a com-
plex problem for developing autonomous capabilities for
Underwater Vehicle Manipulator Systems (UVMSs). The
modeling of UVMSs is a complicated and costly process
due to the highly nonlinear dynamics and the presence
of unknown hydrodynamical effects. This is aggravated in
tasks where the manipulation of objects is necessary, as this
may not only introduce external disturbances that can lead
to a fast degradation of the control system performance, but
also requires the coordinating with a vision system for the
correct grasping and operation of the object. In this article,
we introduce a control strategy for UVMSs working with
unknown payloads. The proposed control strategy is based
on a data-driven optimal controller. We present a number
of experimental results showing the benefits of the proposed
strategy. Furthermore, we include a discussion regarding
the visual perception requirements for the UVMS in order
to achieve full autonomy in underwater manipulation tasks
of unknown payloads.

I. INTRODUCTION

Currently, there are increasing efforts to explore and
exploit maritime resources to further expand and advance
capabilities within the oil & gas industry, research,
and military applications. However, many of these un-
derwater applications consist of intervention tasks in
which dexterous manipulation is required [1]. Usually,
a Remotely Operated Vehicle (ROV) will perform these
tasks where an underwater manipulator is attached to a
vehicle, and a human operator is in charge of driving
the system. This approach involves high operational
costs due to the need of specialized operators and
large infrastructures. An alternative solution is the use
of fully autonomous systems [2], [3], where a ma-
nipulator is mounted on an Autonomous Underwater
Vehicle (AUV). With these systems, underwater manip-
ulators can perform autonomous tasks in any underwater
environment [4]. A key stepping-stone in developing
fully autonomous capabilities for manipulators on board
AUVs is implementing robust control structures and
active perception systems. This is challenging as these
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Fig. 1: The underwater manipulator Reach Alpha 5 is
mounted on the BlueROV2 Heavy and has a wrench as
payload.

systems are high-dimensional, highly nonlinear, gov-
erned by parametric uncertainties, have limited power
supply, and they have to act robustly in environments
with very poor visibility [5].

Underwater intervention tasks usually require interac-
tion with the environment and manipulation of payloads
that might be unknown a priori. For instance, some tasks
may require the underwater manipulator system to carry
or transfer some payload, or to use specialized tools
for maintenance/repair applications [6]. This increases
the difficulty of the manipulation problem as the sys-
tem has to correctly localize and grasp these objects.
Furthermore, once these objects have been grasped the
behavior of the manipulator system is now affected by
the dynamics of the objects. In addition, information
about the possible payloads may be unknown which
further increases the problem’s complexity [7]. In search
of complete autonomy for the manipulation of unknown
payloads in underwater environments, there is an express
need of having a reliable perception system but at
the same time a control system robust to changes and
capable of performing complex operations is required.
However, this problem has not been extensively studied
in the literature [8]. While the paper starts by presenting
the control architecture for UVMS, Fig. 1, working
with such unknown payloads, it also provides a detailed
discussion about the perception system needed to achieve
high accuracy underwater manipulation autonomously.



II. UNDERWATER MANIPULATOR DYNAMICS

The dynamic model of an underwater manipulator is
given by the equation of motion, as follows:

M(q)q̈+C(q, q̇)q̇+D(q, q̇)q̇+η(q)+ff (q) = τ−JTF
(1)

where τ ∈ Rn are the torques of the manipulator joints,
and n is the number of joints of the manipulator, q ∈
Rn are the joint positions, q̇ ∈ Rn represent the joint
velocities, and q̈ ∈ Rn are the joint accelerations, with
n being the number of joints. On the left side of the
equation, we have the inertial matrix M(q) ∈ Rn×n,
the Coriolis and centripetal vector C(q, q̇) ∈ Rn, the
damping and lift vector D(q, q̇) ∈ Rn, the restoring
forces vector η(q) ∈ Rn, and the friction vector ff (q) ∈
Rn [9], [10]. On the right side, the vector of interaction
forces with the environment is represented as F ∈ R6

with J ∈ R6 being the Jacobian of the manipulator [11].
While some parameters in the model presented in Eq.

(1) can be easily obtained, others, such as those related
to hydrodynamic effects, can be difficult to obtain [12].
Consequently, simplifications are usually made about
certain parameters while obtaining the model. Further-
more, learning the information of the environmental
forces requires force/torque sensors, which can be costly,
especially for deep-sea applications. While it is possible
to estimate the interaction force vector using current
measurements from the manipulator, they tend to have a
high degree of uncertainty [13].

An alternative to classical modeling comes from data-
driven techniques. In these formulations, a black box
type function is obtained that relates the input forces of
the system, τ , with the resulting position and velocities
[14]. Under such formulations, artificial neural networks
or Gaussian processes are used to learn the dynamics of
the system [15]. The advantage of this type of modeling
is that the model learns the true interaction without any
simplifications to the model. Under such models, the
dynamics of the system can be written as:

[qt+1, q̇t+1] = g(qt, q̇t, τ t|θ) (2)

where g is the Neural Network (NN) function and θ are
the parameters of the network. Through this technique,
obtaining the robotic system’s model becomes the task
of finding the NN parameters that best describe the
relationship of the input data to the output data [16].

While data-driven techniques may provide an im-
provement over classical modeling, some problems still
persist. Changes between the training and testing con-
figuration of the manipulator is one of the limitations of
data-driven models. For example, if in the testing phase
the robot will have to manipulate unknown payloads, this
can cause discrepancies between the NN model obtained
during training phase and the one used in the testing

phase. These changes need to be taken into account
within the model or a loss of accuracy occurs, which may
cause a performance degradation. However, in order to
do so, it would be necessary to have information about
the objects a priori, which is not always possible. Fur-
thermore, when working with small manipulators, such
as the one in this article, the weight of payloads may
be comparable to the actual size of the manipulator. For
example, the Reach 5 Alpha manipulator weights only
1.3 kilograms but can lift up to 2 kilograms underwater.

Therefore, when working with unknown payloads,
data-driven techniques are not enough to ensure the
desired working conditions will be met. In the following
sections, we will develop an adaptive formulation within
the context of optimal control that together with the data-
driven modeling approach shows promising results for
the control of underwater manipulators.

III. CONTROL SYSTEM FOR UNDERWATER
MANIPULATORS

In this section, we will describe the main components
of our proposed algorithm, the Neural-Network Model
Predictive Control (NNMPC) controller. The basic con-
trol system structure can be seen in Fig. 2. Our control
system is based on a two layer architecture. In the lower
layer (Data-Driven Model Predictive Control), we have a
data-driven Model Predictive Control (MPC) controller,
namely the NNMPC. This controller uses a data-driven
model based on a neural network. The controller receives
the current state of the system (q̇t and qt) and a desired
reference (rqt and rq̇t ), and outputs the optimal action
(ut) that will bring the arm to the desired reference state.
In the following paragraphs, we introduce the lower layer
of the controller.

A. Data-Driven Model Predictive Control

The MPC control approach focuses on minimizing
a cost function over a finite horizon window. This
minimization takes into consideration any constraints
imposed on the system, such as the joint limits of the
manipulator and the dynamic model of the system. In
this project, we define a cost function in the context of
MPC, as:

J(t) =P (t)

t∑
t0

et∆l +

t+N∑
t

||rqt − qt||2Q1(t)

+||rq̇t − q̇t||2Q2(t)
+ ||∆ut||2R(t)

(3)

where et ∈ Rn is the integral error in position with
∆l ∈ R being the integration step, rqt ∈ Rn and rq̇t ∈ Rn

are the position and velocity references, qt ∈ Rn and
q̇t ∈ Rn are the position and velocity states, ut ∈ Rn

is the torque commands sent to the arm, and ∆ut ∈ Rn

is the variation between commands sent at time t and
t − 1. Additionally, R(t) ∈ Rn×n, Q1(t) ∈ Rn×n,



Fig. 2: Basic structure of the proposed NNMPC controller. The NNMPC takes as input the error between the current
state of the system (q̇t and qt) and the desired reference (rqt and rq̇t ) and outputs the control commands to the arm
(ut).

Q2(t) ∈ Rn×n and P (t) ∈ Rn×n are the weight
matrices, and N is the horizon window for which the
problem is being solved. Notice that we make all the
weight matrices (R(t), Q1(t), Q2(t), P (t)) dependent on
time, which means that these matrices can be modified
depending on the current state of the system at time t.

In the classical MPC formulation, the future states
of the system, st+1 = [qt+1, q̇t+1] to st+N =
[qt+N , q̇t+N ], are typically predicted using a linear
model of the plant being controlled. In our case, however,
we are interested in developing a data-driven formulation
using neural networks. Under this scenario, we consider
a neural network that will predict the successive states
of the system as:

[∆qt+1,∆q̇t+1] = g(qt, q̇t,ut |θ) (4)

where g(·) ∈ R3n → R2n is the neural network function,
θ are the parameters of the NN, ∆qt+1 ∈ Rn is the
change in position, and ∆q̇t+1 ∈ Rn is change in ve-
locity. With this formulation, instead of directly learning
the successive state of the system, we learn the change
with respect to the previous state [14]. The successive
state can then be obtained by a simple operation, i.e.,
qt+1 = qt + ∆qt+1.

With this formulation in mind, the MPC control for-
mulation can be written in the following way:

u∗(t) = min
ut+`

P (t)

t∑
t0

et∆l +

t+N∑
t

||rqt − qt||2Q1(t)

+||rq̇t − q̇t||2Q2(t)
+ ||∆ut||2R(t)

(5)

subject to ut+` ∈ Un

qt+` ∈ Xn

∀ t = 0, ..., N

where the optimal action (u∗(t)) is obtained by minimiz-
ing the cost function J(t) in Eq. (3), and the position and
velocity at time t are obtained using the NN formulation
previously described in Eq. (4).

Although the data-driven formulation provides ad-
vantages in comparison to the classical MPC, large
variations in the dynamics of the system can create
problems where the data-driven approach may not be
able to ensure the control requirements are met. Under
such cases, it may be necessary to re-tune the parameters
of the control system to adjust to the changing dynamics,
as one set of tuning parameters may not be enough for
every working condition. This brings the need for an
adaptation mechanism that allows the weights of the
MPC to be modified on-line.

IV. CONTROLLER EVALUATION

The controller presented in the previous section has
been deployed on the Reach Alpha 5 underwater manip-
ulator [17] capable of working in depths of up to 300m.
This manipulator has five degree-of-freedoms (DOFs)
consisting of four rotating joints and one end-effector
gripper. However, we are not interested in controlling
the gripper so for the remainder of the results section
we will be working with the first four DOF. We consider
the case of the arm moving once the unknown payload
was already grabbed by the arm, so a vision system for
detecting the object was not incorporated. We utilize
Robot Operating System (ROS) to communicate with
the manipulator at a frequency of 20Hz.

The data-driven NN model of the manipulator was
developed using Tensorflow. The employed artificial
neural network was a fully connected feed forward net
with two hidden layers of 25 neurons each. The input
to the neural network is a vector of size 12 consisting
of the positions (qt), velocities (qt) and actions (ut).
The net provides the estimated successive state at time
t+1. The data for training the network was obtained with
real-time data, by performing random motions with the
manipulator. The activation functions used for the hidden
layers are ReLU [18], while a tanh function is used in
the output layer. In the implementation of the NN, we
utilized the Mean Squared Error Loss (MSE) function,



(a) NNMPC holding Wrench 2 (b) NNMPC holding Weights

Fig. 3: NNMPC controller on moving base holding different weights. a) Holding the wrench with
rt = [1.7, 1.8, 1.6, 1.6] radians. b) Holding weights with rt = [1.7, 1.8, 1.6, 1.6] radians

which has an equation L(θ) =
∑N

i (si − ŷi)
2. The

training of the neural network was performed using the
Adam optimizer, a gradient based optimization algorithm
[19] available in the Tensorflow library. Additionally, we
used a learning rate of lr = 0.001.

The cost function used for all experiments is that of
Eq. (3). To solve the MPC optimization problem, we
used the Python library pyOpt [20], and we utilized
the Constrained Optimization BY Linear Approximation
(COBYLA) algorithm [21]. We set an horizon window
of N = 7 with a sampling rate of dt = 0.05 seconds.

The tests were performed in a cylindrical water tank
with a depth of 1.5 meters and a diameter of 2.5 meters.
In these tests, we are interested in the performance of
the algorithm when the arm is manipulating a variety of
objects. We show results for two different objects, each
with different characteristics, that the arm has to hold
with the gripper while trying to reach the desired joint
positions. Information about the weight and geometry
of the objects was unavailable to the control systems
at all times, and therefore these objects are effectively
unknown. Therefore, for the remainder of the paper we
refer to these objects as unknown payloads. The payloads
are: a wrench weighing 0.5 kg (wrench) and 12 inches
long, and a set of weights packed together weighing 1
kg (weights) and three inches width and length and two
inches height. However, when selecting the objects, the
dry mass range of the payloads were restricted by the
limitations of the Reach Alpha 5 manipulator, which
has a lift capacity of 2kg [17]. The testing setup can
be observed in Fig. 1.

In the first test, the arm was manipulating the wrench

while trying to reach a desired joint position of rt =
[1.7, 1.8, 1.6, 1.6] radians. The obtained joint positions
are shown in Fig. 3a. It can be seen, that while the
joint positions are reached in less than 3 seconds, joint
4 presents a small overshoot, which relates to the ex-
tra torque caused by wrench in the joint. Following,
we performed a test with the arm holding the 1 kg
weight. For this test, the desired joint position is rt =
[2.5, 2.0, 1.6, 2.2] radians, and the obtained results can
be seen in Fig. 3b. We can see that due to the extreme
characteristic of the payload, joints 2 and 4 require a
longer time to reach the desired joint position.

V. PERCEPTION FOR UNDERWATER MANIPULATION

The preceding results show the advantages of data-
driven modeling techniques. In this regard, the NN
helps to capture unmodeled dynamics in the manipu-
lator, which improves the overall performance of the
controller. This process brings substantial performance
improvements when facing unknown payloads. This is
of great importance in furthering autonomous operations
that require manipulation with unknown payloads.

Regarding the sensing techniques utilized, the Reach
Alpha 5 is a high precision arm that utilizes encoders
for obtaining the joint states. The arm uses magnetic
off-axis position encoders (iC-MU from Haus integrated
circuits) which have an accuracy of ±0.1 degrees in the
joint position. Those sensors are integrated inside the
arm so the controller gets an immediate update with no
interference. For our current implementation, the biggest
concern with regard of sensing comes from the potential
case in which one of the encoders fails. In such case,



the uncertainty in the measurements goes outside of the
bounds given by the manufacturer and the controller will
be unable to perform its required tasks.

Additionally, we only consider the case of the arm
moving once the unknown payload was already grabbed
by the arm, so a vision system for detecting the object
was not implemented. However, this will be required for
the whole system in the case of autonomous control.
We theorize that a combination of 3D vision, utilizing
cameras, together with underwater image restoration,
would allow the UVMS to obtain the necessary visual
feedback to close the perception-action cycle [22].

In this sense, stereo vision is a common way of
controlling a robotic manipulator with camera feedback
[23]. Typically, object detection is used to find the object
that must be manipulated. Once the object is found, the
next step is to find the distance to the object. This can
be calculated using trigonometry by having two cameras
that are a known distance apart from each other and both
looking at the object [24]. This distance can then be
sent to the control system to modify the required end-
effector position based on the current payload location
with respect to the UVMS [25].

However, one problem faced in underwater environ-
ments is the poor visibility, caused by the strong ab-
sorption and scattering effects [26]. Additionally, light
changes and water turbidness can cause adverse effects
on the image, distorting it and decreasing the clarity.
One solution to this problem could be haze removal and
color correction. Haze removal makes the output image
clearer and rids much of the blurriness that occurs. Next,
color correction is done to extract the true colors of
the image. In underwater environments, the blue and
green channels present higher intensities than the red
channel [27]. Therefore, by performing color correction,
the colors appear more vividly, as they would out of
water, adding more detail to the image [28].

By combining these methods, we believe that the
problem of unknown payload manipulation in UVMS
could be solved autonomously. Two cameras could be
used to give feedback to the controller and operate the
arm correctly. Simultaneously, haze removal and color
correction will modify the images from the camera to
produce a more accurate representation of the underwater
environment. However, in order to deploy this type of
system completely autonomous, increased computational
power is necessary. For this reason, we plan to increase
the load capabilities of the UVMS by incorporating
another enclosure, that will allow us to mount additional
cameras, together with an additional computer. We plan
to incorporate an NVIDIA Jetson nano, due to its small
footprint and high computational power.

VI. CONCLUSIONS

In this work, we developed a low-level controller
based on data-driven Model Predictive Control for the
control of an underwater manipulator working with un-
known payloads. We utilized a NN to derive a model for
the manipulator which was used by the MPC controller.
In this way, we were able to obtain a more accurate
model of the manipulator that directly takes into consid-
eration the environmental disturbances. While previous
works have utilized such a formulation, most have been
done in simulation or utilized the network to directly
learn the commands of the MPC controller. We were
able to solve the data-driven optimization problem online
by utilizing a low impact NN. Moreover, we provide a
discussion regarding the necessary steps for the creation
of a perception system that will allow the UVMS to
perform the unknown payload manipulation, in changing
underwater environments, autonomously.
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[6] Satja Sivčev, Joseph Coleman, Edin Omerdić, Gerard Dooly,
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