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Abstract— Mapping and monitoring underwater environ-
ments are topics of progressively increasing importance, but
they also introduce several new challenges in robotics, due to
the unique underwater conditions. Underwater robots operating
close to underwater structures should be equipped with robust
localization modules, robust navigation pipelines capable of
safely navigating the underwater robot by sensing and avoiding
obstacles, and collecting the necessary observations of the
surroundings. Especially, tasks that require visual inspection
executed by autonomous underwater robots are significantly
challenging due to the visibility limitations of the underwater
domain. We propose a new active perception framework for
underwater robots utilizing arbitrary multi-camera configura-
tions, which safely navigates the robot in close proximity to
target structures. It also produces motions that encourage the
robot to actively track multiple visual objectives, while dealing
effectively with limited FOVs and sensing ranges. Our novel
formulation of the active perception problem provides necessary
building blocks and components for allowing the robot to track
areas of interest that could interchangeably assist mapping,
monitoring, or localization tasks. Although the approach is
initially targeted to multi-camera systems, we show that it
could be readily adapted for heterogeneous configurations with
other sensors such as sonars and LIDARs. Preliminary results
in simulation showing the strong potential of the proposed
technique, together with applications and future extensions of
the method are discussed.

I. INTRODUCTION

Underwater operations using Autonomous Underwater Ve-
hicles (AUVs) is a research topic that attracts attention
of an increasing number of researchers and organizations
in both academic and industrial settings. Pushed by recent
advancements in hardware, real-time state estimation, and
motion planning techniques, this strong current towards
realizing autonomy in the underwater domain is supported by
many potential applications, such as marine archaeology, un-
derwater infrastructure inspection and maintenance, energy
and resource utilization, public security, and environmental
monitoring. Moreover, due to climate change threatening
maritime infrastructure and requiring constant monitoring in
isolated and hard to reach marine environments, underwater
autonomy is becoming more essential than ever.

Currently, most —if not all— essential underwater tasks
are performed by human operators directly who risk their
health or even lives, or remotely by controlling ROVs which
require significant human resources and logistics. In the first
case, even excluding the risks, operations are constrained

M. Xanthidis, J. Johnson, J. M. O’Kane, and I. Rekleitis are with the
Department of Computer Science and Engineering, University of South Car-
olina, Columbia, SC, USA. [mariosx, jvj1]@email.sc.edu,
[jokane, yiannisr]@cse.sc.edu

This work was made possible through the generous support of National
Science Foundation grants (NSF 1659514, 1849291, 1943205, 2024741).

Fig. 1. Aqua2 AUV navigating over the Pamir shipwreck, Barbados.

by water conditions, and especially the hard limitations
on maximum depth and operation duration set by human
biology. In the second case, even excluding the deployment
costs, tethered operations are limited to unconfined spaces
and generally uncluttered environments. Also, the human
operators are controlling the ROV based on limited infor-
mation from its sensors, which potentially leads in delays
and underutilization of the platform’s capabilities due to very
conservative and overcautious operation.

Autonomous Underwater Vehicles (AUV) could perform
tasks underwater without additional motion, depth, and du-
ration limitations and especially without any risk to human
lives. But AUVs deal with other important issues that are
raised in the underwater environment, both with hardware
and software. A major bottleneck of underwater autonomy
is robust vision-based SLAM [1], [2], leading many state-
of-the-art platforms to rely completely on dead-reckoning
in order to avoid the visibility challenges of the underwater
domain such as color attenuation, turbidity, and lack of color
saturation, illumination, and feature-rich areas. A second
important bottleneck is real-time motion planning, which
should deal with motion uncertainty and safe operations in
proximity to underwater structures and cluttered environ-
ments for monitoring, mapping, and exploration purposes.

Previous work has addressed these issues providing ro-
bust solutions for visual-inertial-based underwater state-
estimation, by introducing SVIn [3] and SVIn2 [4], and a
complete robust underwater navigation framework, called
AquaNav [5], which was tested on the Aqua2 AUV —
see Figure 1— in simulation, pool, and open-water trials.
Though AquaNav provided safe and efficient paths that
avoided obstacles in real-time, it had no consideration on



the future visibility of the few feature-rich areas of the
underwater domain, which SVIn2 and many other vision-
based SLAM techniques rely upon. Additionally, for the
same reasons, AquaNav lacks the awareness needed for
inspection, mapping, and monitoring purposes. Thus, intro-
ducing a new methodology for active perception will not only
extend autonomy and minimize state-estimation uncertainty
by driving the robot towards feature-rich areas, but also it
will enable it to observe areas or objects of interest.

This paper proposes a novel formulation for active per-
ception and a novel framework for a real-time perception-
aware underwater navigation, called AquaVis. The proposed
pipeline builds on the existing AquaNav pipeline and en-
ables an underwater robot with an arbitrary multi-camera
configuration to perceive multiple visual objectives, extracted
automatically, along the path for mapping, monitoring, or lo-
calization purposes, by introducing two novel cost-functions
in the optimization process. These visual objectives can
be perceived online and from a desired distance, while at
the same time safely reaching the desired goal. Though
our primary focus lies on multi-camera configurations, as
shown in our experiments, other sensors such as sonars and
LIDARs, or combinations of sensors of different capabilities
and attributes, could be used within our approach to offer
more robust performance.

II. RELATED WORK
The problem of active perception was first introduced by

Aloimonos et al. [6] and Bajcsy [7] and then by Feder et
al. [8] in the context of exploration. Additional work fol-
lowed, developing active perception techniques for pose and
map uncertainty reduction [9]–[18], but they only considered
the 2D case, with no clear indication on being able to scale
for applications in 3D – our target domain.

Recently, 3D active perception approaches have been
developed for quadrotors but none of them could be applied
directly to the problem considered in this study, because they
either use direct photometric methods that perform poorly
underwater [19], [20], do not provide sufficient obstacle
avoidance guarantees for observations in proximity [19]–
[29], consider only a single visual objective (or a single clus-
ter of visual objectives) that should be always visible [24]–
[33], are trained to operate only in known environments,
or similarly to the previous works they assume a mobile
robot that can perform lateral motions [21], [34]. Another
common theme on these techniques is an attempt to tightly
couple the objective with a low-level controller which might
be ideal for the applications considered, but does not allow
for developing high-level strategies for exploration, mapping
and monitoring applications. Moreover, any active perception
method applied to Aqua2 [35], a robot with past attempts
to uncover its dynamics [36]–[38] but have yet to provide
a complete model, should deal with motion planning and
control in a loosely coupled or decoupled way, in order to
utilize effectively its separate control module [39]. Addition-
ally, due to the infeasibility of lateral motion by the platform,
multiple visual objectives have to be considered along the
path, assisting localization using a forward looking camera.

There are only few works dealing with active perception
underwater, mostly attempting loop-closing in the context
of coverage [40], [41], or curiosity-based exploration [42].
Other related applications to our objective have been applied
in simulation for 3D coverage of shipwrecks [43], and
real open water trials which avoided rocks and maximized
visibility of corals [44], were based on deep learning tech-
niques, trained upon motion commands obtained by human
operators. Such techniques might not require odometry and
mapping, a very challenging problem underwater, but in
generally are unable to fully exploit the kinematic abilities of
the agile Aqua2 platform, are limited to navigating only to
similar environments to the training set, and very reactive
with a short decision window that was compensated by
following predefined local goals.

On the other hand, AquaVis, the framework proposed
in this paper, attempts to provide a general systematic
framework for active perception originally targeted to the
underwater domain, but without explicit limitations on ap-
plications to other domains, such as aerial or space robotics,
or even mobile manipulators. AquaVis as a purely model-
based geometric method does not require a training set, thus
it does not overfit to any suboptimal decisions of a human
operator, and can be easily adjusted for different tasks by
incorporating third-party packages for object recognition, or
by automatically detecting feature rich areas to assist SLAM.

Unlike the previous methods discussed in this section,
the generality and the applicability of the proposed tech-
nique extends to arbitrary exteroceptive multi-sensor con-
figurations, regardless of the range sensor placement, FOV,
capabilities, or type. Additionally, AquaVis decides actions
that allow the robot to observe multiple objectives along the
path, from a desired distance dealing with turbidity, which
surpasses limitations of previous techniques and provides a
more deliberative planning with a longer decision horizon.
A very recent work [45] has also provided a technique
with similar attributes within an underwater exploration
framework, utilizing additional actuators for controlling the
sensors independently, computationally expensive sampling-
based motion planning approaches, and dead reckoning.
AquaVis is applied on an agile robot with static sensor
units, and inherits the robust navigation performance of
AquaNav in cluttered environments, the typical type of
environment for the target underwater structures considered.
More importantly, it offers limited computational costs and
fast replanning times, similarly to AquaNav, which is crucial
for online application with SLAM.

III. THE PROPOSED SYSTEM

The goal of AquaVis is to produce safe and efficient paths
that encourage observations of points of interest by priori-
tizing visibility over path length. An instance showing the
desired behavior is provided in Fig. 2. The next paragraphs
will explain the basic components of our proposed pipeline:
providing a short overview of AquaNav, presenting the online
extraction of visual objectives, our novel formulation for the
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Fig. 2. An environment with obstacles (grey) and feature-rich areas
indicated with stars. (a) AquaNav, considers only avoiding obstacles and
minimizing the path length. (b) AquaVis, the new method introduced here,
navigates the robot safely by avoiding obstacles, while at the same time
observing nearby visual objectives.
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Fig. 3. System architecture of AquaVis, which is based on AquaNav. Aqua-
Vis alters the core planning component by incorporating visual objectives,
shown with red, while modules for warm-starting, shown with orange, and
path following, shown with blue, are kept the same.

active perception problem, and finally the motion planning
modifications.

A. AquaNav
AquaNav [5] is a robust autonomous underwater naviga-

tion package, capable of real-time replanning, that produces
efficient paths to operate safely in very challenging clut-
tered underwater environments. It operates on pointclouds
produced by SVIn2 [4], a robust visual-inertial-based SLAM
package for underwater operations. AquaNav deals with the
expected motion uncertainty of Aqua2, by quickly produc-
ing minimum-length paths that satisfy clearance guarantees
with a powerful path-optimization-based framework called
Trajopt [46]. Potential local minimum issues are resolved
rapidly with a novel warm-starting technique which alters
the map to reinitialize the optimization with initial solutions
that avoid previously detected local-mimimum areas, by
addition of virtual obstacles and replanning with a very fast
sampling-based motion planner called BiTRRT [47]. Finally,

a waypoint navigation path follower is employed to generate
the motion commands that are fed to the low level controller.

Due to its modularity, AquaNav is a very general frame-
work that could become the basis of more specialized
navigation planners in the future, and can be extended not
only to different domains but also to different and more
challenging navigation problems. We regard AquaVis, the
proposed navigation planner of this work, the first instance
showcasing the strong potential of AquaNav, by inheriting
its unique safety and efficiency features, along with its up-
grading prospects to tackle very challenging problems, such
as underwater active perception, in real-time. The pipeline of
AquaVis is shown in Fig. 3, and it is worth noting that the
main difference with AquaNav is the new input of a set of
visual objectives to be tracked along with novel constraints
added to the optimization problem.

B. Extracting Visual Objectives Online
In the AquaVis pipeline as depicted in Fig. 3, a set of

visual objectives to be tracked, if possible, represented by
3D points, is considered an input to enhance further the
modularity and the potential applications of the proposed
framework. Such input could be determined, for example,
directly by the user, or by other independent third-party
object recognition modules that detect corals [48]–[50], or
other Aqua2 underwater robots [51].

In the absence of any specific monitoring task, in hopes
of reducing position uncertainty in the notoriously challeng-
ing underwater domain [2], [52], we propose tracking the
expected few but necessary feature-rich areas. Thus, a fast
online method that identifies such areas during operations
was developed to inform planning. Our approach is to treat
the extraction of the feature-rich areas from the pointcloud
obtained by the sensors as an unsupervised density-based
clustering problem, in order to identify clusters with dense
features. The process starts by applying the popular DB-
SCAN [53] algorithm on the 3D pointcloud. DBSCAN is
very fast and highly parameter free, requiring as parameters
only the maximum allowed distance for neighboring 3D
points and the minimum number of points per cluster. Then,
the centroids of each sufficient cluster are computed and used
as the visual objectives.

A large number of accumulated visual objectives may
negatively affect the replanning time of AquaVis, but this
problem could be resolved easily by limiting the amount of
visual objectives considered with policies as simple as using
priority queue, or more sophisticated ones, such as updates
based in proximity and relevance.

C. Active Perception Formulation
Most active-perception techniques utilizing optimization-

based methods are focusing on producing a tightly coupled
system between the sensor unit and the controls. Such ap-
proaches might offer faster computation time of motions that
are dynamically feasible, something crucial for application
on quadrotors, but the necessity for strictly convex objective
functions restricts applications to a single sensor and a single
visual objective. In our approach we treat the problem more



Fig. 4. The visibility manifold Fs for 2 cameras mounted on the robot is
shown in light green. Visual objectives v1, v2, and v3 are indicated with
stars. Only v2 is visible because it is inside Fs, while v1 and v3 are not
observable from the robot’s current state s.

(a) (b)

Fig. 5. Different perspectives of the projected points of the F∼
s visibility set

approximating the Fs visibility manifold corresponding to the front camera.

deliberatively by replacing the necessity for dynamically
feasible paths with solutions that guarantee clearance, due
to the expected motion uncertainty of Aqua2. The core path-
optimization-based planning module utilized by AquaVis,
similarly to AquaNav, is Trajopt. Following this concept,
novel cost functions were developed for tracking multiple
objectives, using multiple sensors, for a forward moving
robot with 3D Dubins’ kinematics.

1) Visibility Constraints: Let s ∈ SE(3) describe the
robot’s state (position and orientation) and a set V of 3D
points representing the visual objectives in some common
fixed coordinate frame. Also, let Fs represent the visibility
manifold of the sensor units of the robot at state s, where for
each point o ∈ Fs the point o is visible by the robot at state s
from at least one sensor. The visibility manifold is the union
of the FOVs of all the sensors. Then each visual objective
v ∈ V is either visible from at least one sensor of the robot
at state s (v ∈ Fs), or not visible at all (v /∈ Fs). An example
of the formulation as applied to the sensor configuration of
an Aqua2 robot is shown in Figure 4.

Processing the true visibility manifold directly as a geo-
metric polytope could be very challenging, so an approxi-
mation of the Fs manifold denoted as F∼s is used, formed
by a representative collection of points, Fig. 5. Ideally,
these projected points will sufficiently cover the area of the
visibility manifold up to a desired resolution.

The key idea for the novel visibility cost function is to
project points in front of the sensors and then attempt to
minimize the distance dobj between the closest nearby visual
objective v ∈ V with its closest point f ∈ F∼s . More
formally, the resulting cost function is the following:

Vis(s) = min
v∈V

min
f∈F∼

s

||f − v|| (1)

Upon successful convergence of the Trajopt optimization

(a) (b)

Fig. 6. Top (a) and side (b) views of a state using the novel constraints
during optimization. The blue square indicates a visual objective, and the red
circle marks the next waypoint. Minimizing dobj will result on observing
the objective, while minimizing dalign will force the robot to be consistent
with the kinematics assumed during path execution and planning.

process, by definition, at least one visual objective will be
visible by at least one sensor in each state.

This formulation offers many options for developing dif-
ferent policies in the future, such as enforcing visibility of
visual objectives from multiple sensors by using an F∼s
representing the intersection of the FOVs of the desired sen-
sors, maximizing visibility of many objectives by attempting
to minimize the sum of the distances between each visual
objective and its closest point of F∼s , and alternate sensing of
the target object between different sensors (such as cameras,
LIDARs, or sonars) with respect to proximity by choosing
the relevant parts of F∼s for each state during optimization.

Though the above formulation is powerful and could
lead to superior performance in terms of path quality and
visibility, at the same time it can add a severe computa-
tional overhead during planning, degrading the desired real-
time performance of the AquaVis pipeline. However, both
desired behavior and real-time replanning can be achieved at
the same time, by significantly reducing the approximation
quality of F∼s , to only a single point projected at the center
and at a desired distance dvis of each sensor. This might
seem reductive but it could be argued that such a trade-off
is necessary due to the very limited computational resources
of Aqua2, shared by the notoriously computationally heavy
SLAM modules. Our experimental results showcase the
robustness of the method despite this reduction.

More formally, let C represent the set of sensors, dvis
be a desired distance for projecting the points, T sw be the
homogeneous transformation from the common fixed world
frame to the robot’s local frame at state s, and T cr be the
homogeneous transformation from robot’s local frame to the
local frame of sensor c ∈ C. Then the redacted approximated
visibility manifold can be constructed as:

F∼s =
⋃
c∈C

{
T swT

c
r [ dvis 0 0 1 ]

T
}

(2)

The above simple formulation in conjunction with Equa-
tion 1 guarantees that multiple visual objectives could be
observed by multiple sensors along the path, and that at
least one objective will be observed at each time if possible.
Fig. 6 shows an instance of the proposed cost function and
the distance dobj , shown with blue.

2) Kinematic Constraints: The formulation described in
the previous section solves the active perception problem
sufficiently for holonomic robots, capable of moving freely



in SE(3) with no explicit kinematic limitations. Such a robot
will always orient itself and move towards the most conve-
nient visual objectives. Aqua2, though, and the majority of
the mobile robots, are non-holonomic robots. Especially, in
the case of Aqua2, the controller allows only for 3D Dubins’
locomotion, and the path follower inherited by AquaNav
performs a simple waypoint navigation. Due to the waypoint
navigation, the kinematic constraints assumed during plan-
ning is that the robot will always face and move towards
the next waypoint. This was not an issue that had to be
addressed for AquaNav, since the only constraints affecting
motion planning were path minimization, that minimizes
rotations, and obstacle avoidance, that had no significant
effect violating the kinematic assumption. By adding the
visibility constraint, the robot will be encouraged to face
directly the visual objectives, diverging significantly from
the desired orientation towards the next waypoint.

The above important issue was resolved by adding another
constraint, similar in nature, applied to each state that allows
the robot to both observe the visual objectives while at the
same time forces it to facing towards the next waypoint. Such
alignment was achieved by projecting a single point in front
of the robot at a specific distance and then minimizing the
distance dalign of this point with the next waypoint. Fig. 6
shows an instance of such distance with red.

More formally, let ps denote the 3D position coordi-
nates of state s at a common fixed coordinate system,
S = [s1, s2, . . . , sn−1, sn] be the trajectory to be optimized,
where si, si+1 ∈ S are two consecutive states, that cor-
respond to the two consecutive waypoints psi and psi+1

.
Finally, let len(S) return the total length of the S path,
av(S) = len(S)

n−1 return the average distance between two
consecutive states, let ε be a positive value. Then for each
state si the kinematic constraint aligning properly the robot
to produce valid trajectories is:

A(si) =

∣∣∣∣∣∣∣∣T siw [ av(S)−ε0
0
1

]
−
[
pTsi+1

1

]∣∣∣∣∣∣∣∣ , (3)

Similar to Equation 2 the first element of the first vector
is the distance that the point will be projected. The distance
needs to be automatically adjusted during optimization ac-
cording to the continuously changing path length, while at
the same time both maintains waypoints of equal distance
and encourages minimal paths by being reduced by a small
positive value ε.

By adding Equation 1 and Equation 3 as cost functions
in the optimization formulation of AquaNav, a robust active
perception behavior emerges as shown in the next section.

IV. EXPERIMENTAL RESULTS

Simulation experiments were conducted to validate the
robustness of the proposed AquaVis pipeline within the
Gazebo simulation environment [54]. To simulate the output
that is expected to be produced by vision-based SLAM
techniques, we placed two simulated LIDARs with the same
FOV as the cameras’ configuration on the real robot, as
shown in Fig. 4. The front stereo cameras have a horizontal

FOV of 120◦, a vertical of 90◦, and they are tilted downwards
by 40◦, while the back camera has the exact same FOV but
it is tilted downwards by 90◦. The LIDARs output depth
images of resolution 100×75 which are potentially thousands
more than the expected during real deployment, to show the
capabilities of the pipeline to deal with large inputs online.

We developed two different versions of AquaVis: (i)
AquaVis-Mono that utilizes only the front camera both for
extracting visual objectives and for registering obstacles,
and (ii) AquaVis-Dual that additionally utilizes the back
camera for informing the objectives extraction method and
for sensing. Moreover, we set the maximum range of the
sensors to different distances – 3m for the front cameras
and 6m for the back one – to validate the behavior of
AquaVis for an AUV employed with a heterogeneous multi-
sensor system with different range capabilities. The desired
distance from the visual objectives was set to 1.5m, half
of the maximum range of the front cameras, to encourage
observations from the front camera system, and the desired
clearance to 0.6m similarly to the original AquaNav pipeline
which produces a safe behavior for the expected operating
speed of the robot at 0.4m/s.

Our primary motivation for this work is to enhance un-
derwater operations both for state estimation and for map-
ping, inspection, and monitoring missions. So we compared
AquaVis-Mono, AquaVis-Dual and the original AquaNav
framework as baseline in two different environments.

A. Assisting Vision-Based State Estimation

The first environment, called the Boxes environment, aims
to test the capabilities of the three frameworks to produce
motions that provide good features and robustify underwater
SLAM in environments where they are concentrated in few
sparse feature-rich areas; a very common real scenario during
underwater deployments. The results are shown in Fig. 7
for the AquaNav, the AquaVis-Mono, and the AquaVis-
Dual pipelines respectively, with the first row showing the
resulted trajectories, the second row the features tracked by
the front camera, and the last row the features tracked by
both cameras. The robot started from an initial position from
which only a small segment of the first box was visible only
from the front camera, and a goal set 25m forward.

Notice that AquaNav focused on minimizing the path
length without regard for tracking features, while AquaVis-
Mono was able to track few feature-rich areas with the front
camera and all of them with the back. On the other hand,
AquaVis-Dual tracked all the obstacles with both cameras,
since the back camera feed was informing the path planning
and assisting visibility from the front cameras. Such result
showcases also the capabilities of AquaVis for heterogeneous
sensor systems. For example the back camera could be
considered equivalent to a sonar that has significantly better
range than a camera underwater. Such sensor configurations
could drive the robot towards potentially feature-rich areas
detected by sonars from distance, and assist a visual SLAM
module using the front stereo cameras.
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Fig. 7. First row: Trajectories produced by (a) AquaNav, (b) AquaVis-Mono, and (c) AquaVis-Dual for the Boxes environment. Second row: The
corresponding point cloud obtained by the front camera. Third row: The corresponding point cloud obtained by both cameras. As expected, adding a
second back camera of larger sensing range, informs planning robustifying further the behavior, while the limited range of the front cameras for AquaVis,
leads to similar behavior with the uninformed AquaNav pipeline.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. First row: Trajectories produced by (a) AquaNav, (b) AquaVis-Mono, and (c) AquaVis-Dual for the Shipwreck environment. Second row: The
corresponding point cloud obtained by the front camera. Third row: The corresponding point cloud obtained by both cameras. As expected, adding a second
back camera of larger sensing range, informs planning robustifying further the behavior, while the limited range of the front cameras for AquaVis, leads
to similar behavior with the uninformed AquaNav pipeline.



B. Enabling Mapping and Exploration

The second environment, called the Shipwreck environ-
ment, aims to compare the three frameworks on producing
motions for mapping, monitoring, and exploring challenging
underwater structures, such as shipwrecks; a significant mo-
tivation for this study and our previous works. The results are
shown in Fig. 8 for AquaNav, AquaVis-Mono, and AquaVis-
Dual with the first row presenting the resulting trajectories,
the second row the features tracked by the front camera, and
the last row the features tracked by both cameras. The initial
pose of the robot did not allow it to see any features from
the front camera, while a small segment of the shipwreck
was visible from the back camera. The goal was set at 45m
forward, the approximate length of the shipwreck.

AquaNav and AquaVis-Mono had very similar perfor-
mance, hardly observing any features with the front cameras,
while only a small segment of the deck was captured by the
back camera, due to its long sensing range. On the other
hand, AquaVis-Dual was capable to observe a significant
segment of the shipwreck with the short-sighted front cam-
eras, while the majority of the shipwreck with both cameras.
Moreover, using AquaVis-Dual the Aqua2 was driven in
very close proximity to the shipwreck, which showcases the
inherited strong safety and obstacle avoidance guarantees.

The results show great potential for application on robotic
platforms with heterogeneous multi-sensor configurations,
such as sonars with cameras. The pipeline allows replacing
effortlessly the back camera, or even appending the current
configuration, with a sonar on the Aqua2, to automatically
detect with low resolution potential points of interest. In
such configuration, AquaVis could drive the robot towards
points of interest detected from distance using sonars to take
close visual observations; a very useful attribute for many
scientific, commercial, and security underwater operations.

V. DISCUSSION

A. Importance of Contribution

In this study, a novel formulation for active perception
was presented for tracking multiple visual objectives using
mobile robots carrying arbitrary cameras and range sensors
configurations. This novel formulation was presented in the
context of underwater navigation, though without any explicit
limitations towards applications to other domains. AquaVis,
the proposed pipeline based on our novel formulation, to the
best of our knowledge, is the first real-time computationally-
light active perception underwater navigation method, able
to track multiple visual objectives from multiple sensors
along the path, while at the same time producing efficient
3D motions with a replanning time of 0.5-1Hz and showing
safe performance in proximity to obstacles in cluttered
environments for a robot with significant motion uncertainty.

B. Parameter Tuning
The core planning component of AquaVis, inherited by

AquaNav is a path-optimization based package called Tra-
jopt. A known challenge with such planners is the excessive
parameter tuning often needed for a desired behavior. Indeed,

this is potentially a drawback for the proposed method, but,
in the authors’ experience, tuning until reaching a desired
stable performance was not a particularly intensive time
consuming process. More specifically, the parameter values
could be the same or very similar for similar platforms, and
the tuning could be performed in a methodical way due to the
intuitive cost functions introduced. No need for extra tuning
was identified during addition of extra sensors in our tests.

C. Potential Modifications and Applications

Similarly to AquaNav, AquaVis aims to offer building
blocks for underwater operations requiring high-level plan-
ning or a locally more sophisticated behavior. Regarding the
latter, as noted in previous sections, extracting the visual ob-
jectives is an open problem and third-party frameworks could
be utilized, while AquaVis could potentially be adjusted for
maximizing visibility of multiple objectives simultaneously,
obtain multiple observations using multiple sensors of a
target visual objective simultaneously, move in a way that
alternates between different sensors at different distances for
monitoring specific areas of interest, and improving SLAM.

In practice AquaVis is a local planner that takes as inputs
state and map estimates, a goal configuration, and visual
objectives and produces as output safe motions observing the
given visual objectives. By controlling any of these inputs the
pipeline could readily be utilized by a high-level planner for
mapping, monitoring, exploration of challenging underwater
structures, multirobot operations, cooperative localization,
human-robot collaboration, and search and rescue missions.

Also, it will be interesting to extend the AquaVis frame-
work to other mobile platforms such UAVs by exchanging
the path follower for a robust MPC-based controller. Finally,
a maybe unexpected domain that AquaNav and AquaVis
could be utilized with only few modification is manipulators
and mobile manipulators. Trajopt was originally developed
for such systems, and thus we aspire to solve such difficult
problems utilizing hyper-redundant complex robotic systems.
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