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Abstract— This paper introduces on-going work about a
novel methodology for cooperative mapping of an underwater
structure by a team of robots, focusing on accurate photo-
realistic mapping of shipwrecks. Submerged vessels present a
history capsule and they appear all over the world; as such it
is important to capture their state through visual sensors. The
work in literature addresses the problem with a single expensive
robot or robots with similar capabilities that loosely cooperate
with each other. The proposed methodology utilizes vision as the
primary sensor. Two types of robots, termed distal and proximal
observers, having distinct roles, operate around the structure.
The first type keeps a distance from the wreck providing a
“bird’s”-eye-view of the wreck in sync with the pose of the
vehicles of the other type. The second type operates near the
wreck mapping in detail the exterior of the vessel. Preliminary
results illustrate the potential of the proposed strategy.

I. INTRODUCTION

This paper initiates the discussion on underwater structure
mapping at different scales utilizing a team of coopera-
tive robots. Underwater structure modeling is crucial for
operating in different natural and man-made environments.
These environments are diverse and include shipwrecks, oil-
rigs and hydroelectric dams, submerged historical sites, and
cave systems. Operating in the underwater domain is dan-
gerous, tedious, labor intensive, and physically exhausting
for humans; fortunately, underwater robots can enable such
operations. However, the underwater domain poses unique
challenges, including absence of localization systems (e.g.,
GPS) and communication infrastructure (e.g., WiFi), chal-
lenging visibility conditions, and external forces (currents).
This paper proposes a novel methodology for cooperative
mapping of an underwater structure by a team of robots. In
particular, this paper introduces and discusses the following
research questions with some preliminary results on this on-
going work:

• RQ1: How to robustly achieve cooperative localization
in the presence of occlusions?

• RQ2: How to fuse the different sources of information
on-board in real time for reconstruction?

• RQ3: How should the co-robots cooperate for the
mapping task?
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Fig. 1: Aqua2 AUV navigating over the Stavronikita shipwreck,
Barbados.

• RQ4: How to efficiently and robustly use limited re-
source communication channels to share information
between a team of robots and between robots and
operator?

Utilizing an Autonomous Underwater Vehicle (AUV) to
map an underwater structure presents the following dilemma.
On one hand, if the AUV is close enough to map the
observed details accurately, it is missing the big picture,
i.e., in what direction is the most unknown part, and also,
incremental SLAM generates drift. On the other hand, if
the AUV is far enough to sense a large portion of the
structure, details are missing due to the underwater sensing
conditions. The proposed approach utilizes AUVs in two
distinct roles: proximal observers are AUVs which operate
near the underwater structure (see Fig. 1); distal observers
are AUVs which operate at a distance, keeping a large portion
of the structure together with the proximal observer(s) in
their field of view; see Fig. 3a. Central to the proposed
approach is the ability of the distal observers to detect and
localize the proximal observers via a cooperative localization
framework [1].

II. RELATED WORK

Wreck mapping has been studied using a variety of tech-
niques all around the world. Photogrammetry of manually
obtained images resulted in mosaics in Demesticha et al. [3],
or from an ROV, see Nornes et al. [4]. While the Arrows
EU project provides an overview of robotic technology
use [5]. Menna et al. [6] provide a comprehensive review
of techniques used. Mapping projects extend from Italy [7],
Spain [8], Canada [9], Qatar [10], up to the arctic [11]. With
the most famous wreck explorations of the Titanic [12] and
the Antikythera [13] shipwrecks.
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Fig. 2: The Deep Underwater Relative localization framework from Joshi et al. [2].

Kurazume et al. [14], [15] first introduced the idea of
localizing two robots based on mutual observations, termed
it as cooperative positioning system, although in the liter-
ature it is most often termed as Cooperative Localization
(CL) [1]. Dieudonné et al. [16] proved that CL with an
arbitrary set of sensors is NP-hard, while Roumeliotis and
Rekleitis [17] provided a theoretical analysis of factors that
affect error growth in a CL system. Further studies have
examined the performance [18], the sensing modalities [19],
and consistency [20], proposing decentralized solutions [21]
and integration with inertial sensors [22].

Active sensing methods for dense 3-D modeling have
been reported in the literature, but none of them benefit
from two or more tightly collaborating robots, such as the
ones proposed here. Several approaches require enumerating
and simulating sensing from discrete pose hypotheses in 6-
D [23]–[27] incurring high computational cost; others are
limited to 2-D slices of constant height or depth [28], [29]
or require coarse initial models [30], [31]; while most operate
on occupancy grids drastically reducing the resolution of
the reconstructed surfaces. Exploration strategies [32], [33]
that guide a robot towards frontier voxels without requiring
sampling in pose space are closely related to our work,
but they are limited to single robot, rely on a prior map,
and do not model uncertainty. Multirobot 3-D reconstruction
methods have been presented [34], but robots are assigned
areas to map independently without tight cooperation.

III. THE PROPOSED SYSTEM

A. Overview

The main idea of our approach is to have a team of
co-robots collaborating with a human operator. There are
two types of robots: proximal observers, which will operate
close to the structure in order to produce an accurate map,
and distal observers, which will be at distance maintaining
the global picture of the structure and the pose of the
proximal observer. Currently Cooperative Localization (see
III-B); Motion strategies for navigating near obstacles (see
III-C); Underwater State Estimation [35]; and photorealistic
reconstruction (see III-E) have been explored, while, the

remaining components of the proposed approach are still
under investigation.

B. Cooperative Localization

First, we need to address the problem of cooperative
localization: its solution provides the relative pose between
Distal and Proximal Observers. We recently proposed a deep
learning based framework for detecting the relative pose
between the two robots [2] from a single image.

To overcome the challenge of obtaining training data with
accurate 6D poses, we utilize the Unreal Engine 4 to generate
a rendered dataset by projecting the 3D model of the robot
swimming over underwater images. However, these rendered
images differ from real underwater images due to color loss
and poor visibility quality in the underwater domain. Thus,
we employ CycleGAN [36], an image-to-image translation
network, to bridge the gap between rendered and real images,
producing a synthetic dataset containing images that are
closer in appearance to real underwater images. In effect,
a CNN is trained on the synthetic dataset and then tested on
real underwater images, as shown in Fig. 2.

We modified YOLOv3 [37] by adding a pose regression
decoder, whereas the object detection decoder and backbone
encoder remain unchanged. The pose regression decoder
predicts projected keypoint locations of 8 corners corre-
sponding to the 3D the model of the robot in an image,
along with their confidence scores. An image is divided into
grids, and each image patch corresponding to grid votes for
the object detection box. Instead of using all the grid cells
for 2D keypoint prediction, we select grid cells that fall
inside the object bounding box, thus focusing on regions
that belong to the robot. From these candidate keypoint
predictions, the most dependable 2D keypoint candidates for
each 3D keypoint are selected to yield a set of 2D-to-3D
correspondences. More specifically, we select the 12 most
confident keypoint predictions for each corner of the robot’s
3D model. These selected 2D keypoints are used in the
RANSAC-based PnP [38] algorithm to obtain a robust 6D
pose estimate.

The proposed framework has been tested in different
environments – pool, ocean – and different cameras including
an Aqua2 robot and several GoPro cameras, demonstrating
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Fig. 3: (a) BlueROV observing an Aqua2 robot navigating over the Stavronikita shipwreck, Barbados (b) Aqua2 AUV detected while
navigating over coral reef, Barbados (c) Aqua2 AUV detect in pool experiments.

its robustness with respect to variations in underwater en-
vironment, camera intrinsics, and color calibration, Fig. 3.
Moreover, we demonstrate better accuracy in terms of trans-
lation and orientation error on pool dataset compared to the
state-of-the-art methods [39].

Our pose estimation framework might fail to produce a
correct pose estimate sometimes when the bounding box
detection is not accurate. Hence, relative pose of the robot
from the observer can be determined accurately for each
frame apart from failure cases. We are currently fusing other
sensor data, e.g., IMU and pressure-based depth sensor to
detect discrepancies in estimated pose across multiple frames
and further improve the pose estimate.

C. Proximal Observer: Active Exploration

The main goal of the proximal observer is to operate safely
in proximity to the target structure and collect close obser-
vations. In the absence of prior information, the proximal
observers will greedily explore the underwater structure. We
plan to investigate two different directions:

1) Learning-based Exploration: A Deep Learning frame-
work navigating the underwater robot to collect data in
proximity to the structure is explored. Recently, we proposed
a CNN framework [41] which is trained based on the
way human divers collect data. In this framework, human
operators annotated the training dataset, by marking the best
direction of motion and orientation to guide the autonomous
underwater robot for shipwreck coverage. Although due
to the nature of the technique some limited unpredictable
behavior is expected, we speculate that such techniques
will avoid any issues that might arise from state estimation
uncertainty.

2) Optimization-based Exploration: A path-optimization-
based technique is considered to navigate the robot near
the structure maximizing visibility and information gain.
Past work introduced AquaNav [42], a robust underwater
navigation framework utilizing a path optimization planner
that allows extensions in the form of cost functions. We will
investigate the addition of novel cost functions maximizing
visibility of target structures, determined on-line by a CNN
similarly to [43]. Such a technique would require sufficient
localization capabilities that could utilize a robust SLAM

(a)

(b)

Fig. 4: Example of the enhanced AquaNav [40] pipeline navigating
the Aqua2 safely in proximity to two initially unknown simulated
shipwrecks increasing visibility; a desired behavior for the proximal
observers. The Aqua2 robot is highlighted with red.

method such as SVIN2 [35], or can be provided locally by
dead reckoning. We expect that although robust localization
is needed, unlike the first approach, such a framework could
ensure a predictable and safe performance with complete-
ness, if paired with a high-level global planner. Preliminary
results in simulation already show strong potential for this
approach, as can be observed in Fig. 4.

D. Distal Observer: Active Positioning

The main objective of the distal observer is to track the
proximal observers while simultaneously keeping in frame
from a larger distance a bigger portion of the target structure.
To achieve such behavior, the distal observers have to be



capable to visually recognize and localize the proximal
observers, predict their motions, visually recognize relevant
segments of the target structure, and plan motions that satisfy
the desired tracking objectives.

1) Proximal Observers Tracking: Prior work has already
successfully addressed this issue for the Aqua2 underwater
robot [2]. The method introduced a DNN technique trained
on realistic simulated data that enabled an underwater robot
using cameras to extract the relative position and orientation
of another visible robot.

2) Structure Segment Recognition: Past research has
already produced a CNN-based recognition method to
corals [43]. We plan to investigate similar ways to recognise
human-made underwater structures, such as shipwrecks, by
employing DNNs trained on annotated datasets.

3) Motion Prediction: The distal observer has to produce
motions that successfully track the proximal observer, thus
the future positions of the tracked robot should be provided
or extracted. This problem could be resolved either by uti-
lizing a motion predictor combined with fast replanning, or,
when allowed by the underwater communication conditions,
the plans of the proximal observers could be shared directly
to inform motion planning.

4) Navigation and Motion Planning: Given the map, ar-
eas of interest of the target underwater structure represented
as segments, and a predicted trajectory of the proximal
observer, the distal observer has to produce a sequence of
motions that satisfy our objectives. Having already utilized
AquaNav [42] – a powerful autonomous underwater naviga-
tion package for safe operation in proximity – similarly to
the planning problem formulation of the proximal observers,
we will focus on enhancing the optimization process with
novel cost functions encouraging the visibility of the future
positions of the tracked robot and the target structure at a
desired distance.

E. Photo-realistic reconstruction

Our goal in this project is to obtain photorealistic 3D
models useful to the robots and their operators. Even though
3D point clouds may be sufficient for obstacle avoidance,
they are not well suited for tasks such as visibility estimation
or detection of geometric features such as openings and
locations of high curvature. They are also a poor form of
visualization for users to appreciate and understand underwa-
ter structures. We therefore aim to represent surface models
using triangular meshes.

We propose a representation comprising a set of 3-D
keypoints detected on the left (reference) image of the first
stereo pair and reconstructed in 3-D via triangulation after
they are matched on the right image. The keypoints are
connected on the images to form triangles which are then
lifted to 3-D after their vertices have been reconstructed.
The proposed processing steps are as follows – see also Fig.
5, which shows a sketch of the approach.

1) Extract keypoints from the first image of the object and
reconstruct them in 3-D. Harris corners or any other
feature detection mechanism can be used here.

(a) Initial keypoints (b) Mesh and active keypoint

(c) Explained keypoints (d) Generation of new keypoints

Fig. 5: Illustration of surface reconstruction. (a) Keypoints are
detected in the reference image of the first stereo pair and re-
constructed in 3-D. (b) An initial mesh is generated by applying
Delaunay triangulation on the detected keypoints in the image.
The keypoint whose expected error is closest, but higher, than the
specified tolerance (see text) is chosen as the active keypoint (in
blue). The next best viewpoint is computed based on the active
keypoint. (c) After acquiring additional images, the expected error
of some keypoints falls below the tolerance (in green). (d) New
keypoints are generated in previously unseen parts of the object (in
white) and after triangle subdivision (in red).

2) Apply 2D Delaunay triangulation on the keypoints on
the image to obtain a mesh.

3) Select as active keypoint the one with the smallest
expected reconstruction error still above the tolerance.

4) Compute the Next-Best View (NBV) for the active
keypoint using the approach of Freundlich et al. [44],
[45].

5) Update position estimates and error covariance matri-
ces for all visible keypoints based on new images and
label as “explained” those with acceptable expected
error.

6) Detect new keypoints in newly observed parts of the
scene.

7) Insert as new keypoints the vertices that were generated
due to triangle subdivision.

8) Attach new keypoints to the mesh and return to Step
3 unless all keypoints are explained.

As the robot approaches a surface, triangles project onto
larger areas in the image plane and new keypoints may be
detected in their interior. When this occurs, the planarity of



these triangles will be assessed and non-planar triangles will
be subdivided to allow a tighter approximation of the surface.
A classifier will be trained to make these decisions consid-
ering image appearance and reprojection errors computed by
warping one image to another via the mesh. The output of
this module will be a 3-D mesh comprising compact trian-
gles, since their projections satisfy the Delaunay condition
on some views, which will be texture-mapped by blending
the input images with weights emphasizing fronto-parallel
images observing the triangles at high resolution.

F. Underwater Information Sharing

The underwater domain is a very harsh environment
for communication, which is primarily based on acoustic
devices characterized by very low data rate (tens of kilobits),
relatively high packet loss, and distance-dependent perfor-
mance [46]–[48]. This requires decisions over time on what
information to share between robots and human operators.

We propose a hybrid representation comprising, on one
hand, a set of 3-D keypoints and triangles, and, on the other
hand, an octree-based occupancy grid [49]. The keypoints
and triangles capture the details of the surface with the
highest precision that has been achieved so far, while the
octree naturally allows the hierarchical visualization and
transmission of the current state of the estimated model.

Initially, a coarse level of the octree with a few bits per
voxel, indicating whether it is free, occupied or unknown,
will be transmitted. Information about voxels at finer levels
will be transmitted subsequently, if their parent voxels have
been subdivided. Additional information to give the oper-
ator a better view of the current surface estimate and the
progress of the modeling process, such as 3-D reconstruc-
tion uncertainty within each voxel, will also be transmitted
progressively. Finally, as the octree reaches a steady state
and voxels at the finest resolution have been assigned stable
labels, the list of keypoints and triangles will be transmitted.
Note that each voxel is marked with the timestamp of the
last transmission and last update, so that they can be possibly
added back to the transmission list: a metric that identifies
the change will determine the importance of retransmission,
that can be used by the optimization method proposed in the
following section.

We propose to optimize data transmission by performing a
joint cross-layer optimization of the data representation at the
application layer, and the operations of the communication
network.

IV. DISCUSSION

Our research on underwater structure mapping and in-
spection requires advanced state estimation, active sensing,
and communications and will enable more robust situational
awareness, autonomy, and robot coordination. The main
contributions include the use of co-robots in tight coopera-
tion that increases robustness and efficiency of the system
inspecting an underwater structure by assigning different
roles to the robots; an explicit cross-layer optimization for
communication that improves the communication channel

utilization under very limited bandwidth; a sensor data fusion
approach that can be run in real time on-board the robot.
These contributions will be deployed and demonstrated on
inexpensive vehicles, such as the BlueROV2. The software
developed to enable these operations will be open-sourced to
facilitate research in the challenging field of marine robotics.

Taking a wider view, we aspire that our work will reduce
the cost and risk of having divers perform exploration
and mapping tasks, possibly under adverse conditions. We
explicitly plan to rely on low-cost platforms to reduce the
cost of underwater robotic operations. Reducing the cost
and risk would enable broader mapping efforts leading to
the discovery of historically important, valuable or otherwise
interesting artifacts. Human divers will be engaged only after
the robots have found promising evidence. Besides govern-
ment entities and non-profit organizations, such as museums,
the proposed research will benefit archaeologists who can
monitor whether a recovery is needed for preservation as
mandated by the UNESCO Convention on the Protection of
the Underwater Cultural Heritage [50].
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