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Abstract—This paper discusses a photometric stereo frame-
work to enable real-time scene 3D reconstruction of underwater
structures with a non-stationary small low-cost underwater
robot equipped with a monocular camera and fixed intensity-
controllable lights. Previous approaches for underwater pho-
tometric stereo provided accurate scene reconstruction results,
assuming that the robot is stationary at the bottom. This
assumption limits the structures that can be reconstructed. In
addition, lights are assumed to be either on or off and set at
relatively large distances to the camera. To achieve photometric
stereo on a small low-cost robot, such as the BlueROV2, there
are two fundamental questions that we explore in this paper:
1) the use of images consisting light intensity changes, so that
changes in light position are not necessary; 2) the relaxation
of the camera/robot stationary assumption. After defining the
photometric stereo model, we experimentally show that changes
in light intensity result in saturated areas on the object, providing
constraints to solve the photometric stereo problem. In addition,
we discuss the use of binary features, such as ORB, to estimate
small motion and incorporate the estimations in the photometric
stereo objective function. The photometric stereo framework and
insights discussed in this paper are the foundation for the full
implementation of the photometric stereo model on a low-cost
robot, which will then be used within an active perception pipeline
to let the robot explore a structure and capture high-quality data.

I. INTRODUCTION

In this paper, we present preliminary work for solving the
photometric stereo model in the case of non-stationary under-
water robots. Photometric stereo is a well known computer
vision technique for reconstructing high resolution scenes
or objects, typically out of water and considering stationary
cameras.

Scene reconstruction is a common and important aspect in
many underwater tasks, particularly for inspecting man-made
structures (i.e., dams, oil rigs, ship hulls) [1], monitoring target
biological locations [2], and exploring reefs [3] and archaeo-
logical sites [4]. Autonomous Underwater Vehicles (AUVs) are
becoming more commonly dispatched to tackle these various
tasks. Not only can AUVs stay longer underwater than a diver,
but they are also typically set up with a modular sensory
suit – at the very least with an IMU, monocular or stereo
camera, single-beam echosounder, and lights [5], and more
extensively (and more upscaled in price) with a multibeam
sonar, side scan sonar, and guidance-based equipment (i.e.,
fiber-optic gyroscope (FOG) IMU, acoustic Doppler Velocity
Log (DVL)) [6], [7]. We note that the new Water Linked DVLs
may be considered as low-cost sensors (∼USD 6k), but will
be omitted in this paper.
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Fig. 1: A photometric stereo framework for non-stationary
underwater robots allows low-cost AUVs, like the BluerROV2,
here to explore shipwrecks while computing scene reconstruc-
tion models, even under dynamic lighting conditions.

Multibeam and other sonars were shown to be extremely
useful as sensory input for accurate underwater scene recon-
struction [1], [8]. However, sonars lack the visual (i.e., color,
texture) and resolution characteristics that cameras provide –
which can be enriched by fusing sonar and camera(s) data.
On its own, monocular camera-imagery input cannot provide
accurate scene depth information [9]. IMU or DVL data
can be integrated [10]–[12], but in our case with a low-cost
underwater robot like the BlueROV2, we will uphold that the
IMU is too unreliable. We have shown in previous work that
a low-cost single-beam echosounder can improve monocular
camera scene depth estimation [5].

Photometric Stereo (PS) relies solely on camera imagery
and light sources (artificial or natural), so it does not require
expensive multibeam or side scan sonars. It is originally [13]
based on the observation that an object’s surface normals
can be estimated by observing changes in the surface points’
reflected light intensities among different images, where light
source(s) change position, but the camera’s position always
stays in place. For a review of different PS methods, we refer
the reader to these works [14], [15].

An underwater environment is a difficult scenario for any
camera-based scene reconstruction technique. Light attenuates
(reduces in intensity) more extensively in water than in air; as
light waves travel in water, they are scattered and absorbed
by the different particles they collide with. Attenuation is
the main reason why images taken underwater look as if
they have lost color and contrast (e.g., murky, blurry). The
amount and manner that the light attenuates are dependent on
the oceanic properties in that location at that time and the



distance that the light must travel. Accurately calculating the
attenuation parameters for a certain body of water requires
a spectrophotometer and other specialty instruments [16].
Fortunately, there has been work on how to estimate the
attenuation values, typically for the goal of color correcting
or enhancing underwater images [17]–[19]. Many of these
methods followed an image formation model, extended from
the model used for in-air imagery, such that it includes the
additional lighting effects that occur in water [20].

Underwater PS follows a similar image formation
model [21]–[23]. It furthermore includes information on how
incoming light attenuates during travel, how it reflects from
each surface point of the scene object, and the distances of
each surface point from the camera and light(s).

Another issue related to underwater scenarios is that the
behavior of ambient light – the amount of sunlight directly
above the surface of the water and how it enters the water –
is very unpredictable and dynamic. The amount of ambient
light entering the water depends on the weather, time of day,
and presence of any obstacles (i.e., boats, swimmers). When
the light rays enter the water, they are refracted, and with
the presence of surface waves, the light rays are directed to
multiple different directions over time, causing light ripple
effects on the below underwater scene. Many works that
utilized the underwater image formation model either did not
consider how to thoroughly solve the issue of the dynamic
ambient light [12], deployed AUVs at a sufficient depth where
on-board lights can be assumed to be the main sources of
illumination, or conducted experiments at night [3], [24], [25].
Unpredictable, dynamic light – not surprisingly – harmfully
affects the results of underwater scene reconstruction models
based on input from camera-imagery only [12].

Work on artificial light intensity control [26], [27] and
camera relative to scene positioning [3] were shown to provide
invaluable results when constructing 3D models of objects.
However, many of these approaches assumed ambient light
was negligible or could be handled with statistical meth-
ods [12]. By including repetitive ambient light estimation and
collecting camera images under various artificial lighting for
each camera-to-scene pose, we are hopeful to mitigate scene
reconstruction error due to dynamic ambient lighting.

Accordingly, PS methodologies already require multiple
images under different lighting conditions to optimize the
scene’s orientation and 3D surface. Thus, we believe that a
PS approach can be applicable to low-cost AUVs that are
exploring a shipwreck, under dynamic lighting conditions, and
collecting images to be used for scene reconstruction – killing
two birds with one stone.

Photometric stereo for non-stationary underwater robots is
to the best of our knowledge a novel, unsolved problem.
Previous PS works [24], [25] that tested with underwater
robots required that the robots stay settled on the bottom to
ensure that the camera does not move. This is undesirable as
(1) target objects (i.e., corals, parts of shipwrecks) may be
located meters above the bottom, (2) most underwater robots
are setup to be neutrally or positively buoyant, thus requiring

motor usage to stay on the bottom and that may cause sediment
stirring and image hazing, and (3) it is common underwater
practice to not touch the habitat in order to avoid accidental
interference with sensitive organisms and artifacts.

PS for non-stationary underwater robots introduces new
issues and research questions:
• R1: Can images taken with the light position in place,

but whose light intensity changes, be as informative as
images taken with the light position changing? Installing
four individually controlled lights, each in a different
position, is a waste of cable port usage (i.e., it would
take up 4 of the 14 penetrators of a typical end cap on a
BlueROV2). To minimize the number of lights required,
we will look into a PS model that considers how different
light intensities may change the scale of brightness in the
scene, but, more interestingly, it may also identify surface
patches whose brightness is at saturation – the reflected
light (brightness) will not increase with a stronger light
intensity.

• R2: Can an object be well reconstructed using a PS
model, even if the images were taken while the robot
was moving? The underwater robot cannot always stay
in place while it is suspended in water; it will slightly
move due to external water forces or motor usage. We
will look into the following: how robot movement can
be approximately estimated by short-term visual feature
tracking, how much robot movement corresponds to
reconstruction error, and how robot movement needs to
be incorporated into the PS optimization scheme.

The ultimate goal is to implement an underwater 3D scene
reconstruction algorithm that is embedded into an active
perception pipeline for real-time visual data collection and
mapping performed by low-cost underwater robots.

The rest of the paper is organized as follows: Section II
explains the underwater image formation model, Section III
illustrates the differences in light models, and Section IV
describes the assumptions that we make about the scene.
Section V finally combines all of the information from the
previous sections to define the model used for solving the PS
problem. Afterwards, in Section VI we will explain in more
detail our research questions R1 and R2 and the preliminary
work we have accomplished. Finally, the paper will wrap up
with a discussion on future steps and a conclusion of our
current observations.

II. UNDERWATER IMAGE FORMATION MODEL

In an underwater scene, an image I captured by the cam-
era’s image sensor follows the simplified image formation
model [17], [18], [20]:

I = D +B (1)

where it is composed of the direct signal D and backscatter B,
as illustrated in Fig. 2. For the rest of the description of the
image formation model, we will refer to grayscale imagery,
as color RGB-based model is more complex with additional
unknowns. In addition, explanations below will be simplified



and will describe a singular pixel point x that corresponds to
a unique surface point, such that I = Ix.

Fig. 2: Illustration of how direct signal and backscatter atten-
uation components arise. Direct signal consists of the infor-
mation coming from the camera-visible scene, and backscatter
consists of the light that was scattered to the camera before
reaching the scene. Forward scatter is included, but is usually
negligible or can be estimated as part of the camera properties.

A. Direct Signal

The direct signal D component corresponds to the amount
of light that has traveled from the light source, reflected from
the visible scene, and reached the camera’s image sensor pixel.
During the light beam’s travel, it is attenuated based on the
water medium’s characteristics, including beam attenuation,
absorption, and scattering coefficients. These attenuation prop-
erties are packaged and approximated as a singular coefficient
value βD, as described in:

D = J
e−β

D(|PSi|+|OP |)

(|PSi|+ |OP |)2
(2)

In color correction terminology, J is the unattenuated (cor-
rected) image. In other words, D is the distorted image of J ,
attenuated by βDc and magnified by the distance from the light
source Si to the surface point P , |PSi|, and the distance from
the surface point to the camera O, |OP |.

More specifically, J consists of the light reflected from the
surface point LR, the surface point’s albedo a, its unit normal
vector n̂, and the incident light direction from the source l̂PSi

,

J = aLR l̂PSi
· n̂ (3)

For simplicity, n̂ and a can be combined as n.

B. Backscatter

The backscatter B component, on the other hand, corre-
sponds to the amount of light that never reached the visible
scene, but was reflected by particles in the water and arrived
at the camera’s image sensor pixel. It is also affected by
the water medium’s attenuation properties, but unlike direct
signal’s attenuation coefficient, it is affected by a different

proportion of the beam attenuation, absorption, and scattering
coefficient, which we denote as βB :

B = B∞(1− e−β
B(|PSi|+|OP |)

(|PSi|+ |OP |)2
) (4)

Note, in many image formation model applications, βD and
βB are assumed to be the same.

The veiling light B∞ is composed of the water medium’s
diffuse attenuation, backscattering, and beam absorption co-
efficients. Roughly, the veiling light can be visualized as the
color in the viewing scene that does not consist of any physical
objects or the ground, or in other words, it is the color in the
far ‘infinite’ distance if the image is taken horizontally. The
veiling light can be calculated as

B∞ = γ L∞(z) (5)

where L∞(z) is a function of the total light arriving at the
image sensor that was reflected midwater along the line of
sight. Here, the range z describes the distance where the
illumination from the artificial light source overlaps with the
line of sight, or, in a simplified version, the distance between
the camera O and the scene point P . In many cases, L∞(z)
can be approximated as a singular value L∞ for a given scene.
γ is described, typically in function form, as the proportion of
light scattered or the scattering scale in the medium.

C. Backscatter Estimation

Traditionally, backscatter is estimated to lessen the com-
plexity of the underwater image formation model. From analy-
sis [20], backscatter increases exponentially over distance until
it reaches to a point of near saturation.

At saturation, the backscatter value stays constant and does
not change. The regions in the image where there are no visible
objects, or the viewing distance is infinite (background), can
be assumed to be composed of more backscatter than direct
signal B � D, or simply D = 0. By taking the average
color pixel value in the image background, we can estimate
the backscatter component. More intuitively, this estimated
background color is assumed to be the veiling light B∞.
Accordingly, pixels that contribute to scene points will have
a less saturated backscatter component value. By subtracting
the estimated backscatter value from the entire image, all that
is left is the direct signal component.

On the other hand, if the images are taken at very close
ranges, the backscatter component is assumed to be negligible,
D � B. Thus, the backscatter component is estimated to be
B = 0.

D. Attenuation Estimation

Attenuation coefficient values are constant throughout the
general area and depth. It can be estimated if one follows any
underwater image model-based algorithm with ground truth
targets. For example, a color chart of known size and colors
is a great tool to help estimate attenuation values in the RGB
spectrum prior to a robot’s run or by placing them in the
viewing scene as in-situ information [3], [17].



For grayscale applications, attenuation can be estimated
with a white (Lambertian type surface) board [25]. The board
is of known size, albedo, surface normals, and distance away
from the camera. With one image taken at the interested water
depth, one can calculate the attenuation for direct signal.

III. LIGHT MODELS

In daylight, ambient light LE is a significant source of
illumination for the first 20-30 m deep in the water column.
With increasing depth, ambient light’s intensity diminishes due
to attenuation and the inverse-square law. As ambient light’s
original intensity LE0

at the surface and its color properties
are unknown for the most part without specialized equipment
or calibration, it is typically treated as an unknown. If ambient
light is the only light source in the scene, then it can be
approximated as LE0 = 1 at the surface. At deeper depths
d, it can be estimated as

LE(d) = LE0

Kd

d2
(6)

where Kd is the diffuse attenuation coefficient. If ambient light
is not the only light source in the scene – as in, the AUV has
its artificial lights on – then one can capture an image of the
scene with only ambient light present and use that to subtract
the following images that include artificial light sources.

Each artificial light source i will be represented as a
spotlight and its original intensity Li0 is known at all time.
Like the work by Bryson et al. [3], we assume that each light
source’s intensity is the brightest along its center directional
line and it decreases with an increased angle φ from this center
line. This can modeled as if there is a Gaussian diffuse filter
in front of the light:

Liφ = Li0e
− 1

2
φ2

σ2
i (7)

σi =

√
φ250%

−2 log 0.5
(8)

where φ50% is the angle at which the power of the light
drops off to 50% – this is typically provided in technical
sheets of light sources or can be estimated using a white chart
calibration setup.

IV. SCENE REFLECTION

The underwater scene is assumed to be composed of Lam-
bertian type surfaces [3], [24], [25]. Thus, the amount of light
reflected from a surface point x is only dependent on the
angle or light direction relative to the surface normal – it
is not dependent on the viewing direction. In other words,
given a surface normal and light direction, the same amount
of reflected light will be observed in any viewing direction as:

LRx =

NS∑
i=1

(Liφ cos(θi)) (9)

where cos(θi) is the angle between the surface normal and
incident light direction l̂PSi

. Here, NS is the number of light
sources that reach the surface point x. Note, reflected light is

also composed of the albedo a, but it is not shown in the above
equation, as it is included when calculating J in Equation (3).
Likewise, the attenuation that occurs during the light travel
through the water medium is included in the calculations for
D in Equation (2) (and B in Equation (4)). The inverse-square
law is also applied to both equations, as light loses intensity
over distance.

V. UNDERWATER PHOTOMETRIC STEREO

The complete underwater image formation model, for one
light source, also termed as the reflectance model, is as follows

I = k
C(λ)nLiφ cos(θi) e

−βDzi +B∞(1− e−βBzi)
z2i

(10)

where zi = |PSi| + |OP |, k is the scalar directing image
exposure, and C(λ) comprises of additional camera properties,
such as vignetting – it can also be included to account
for missing attenuation factors, including forward scattering,
where light rays reflected from scene surface points interact
with particles and are slightly veered off in their original
direction, causing distinct blurriness in the final captured
image. More lights can be incorporated, which would require
that the reflected light is the sum of all lights that reach the
surface point and to include all distance values corresponding
to each light source.

A. Near and Distant Lighting Models

There are two types of lighting model assumptions: distant-
lighting and near-lighting, as shown in Fig. 3. As explained
below, they are dependent on the distance between the camera
and the scene as well as the size of the scene (target object).

The distant-lighting model is the simpler of the two cases.
It is applied when the distance between the camera and the
target object is much larger than the relative size of the target
object. In this case, the light direction from a source to each
surface point in the scene can be assumed to be the same.
Hence, the distances between a light source to each surface
point are assumed to be all the same and the distances between
the camera to each surface point are assumed to be all the
same. Ambient light (sunlight) is always assumed to be based
on distant-lighting.

On the other hand, the near-lighting model considers when
such distances are smaller or when the size of the target object
is much larger. This is important when the illumination from
the on-board light sources are non-uniform. In this case, no
parameter values should be assumed to be the same with
respect to each surface point.

Typically, the near-lighting model produces the highest
accuracy of results, however, as one can imagine, it is also
the most complex of the two. A clever approach [24] is
to setup an iterative convergence algorithm for solving the
estimated PS parameters. For the initial round, the distant-
lighting assumption is used, which will most likely provide
substantial reconstruction error. Consecutive iterations in the
optimization scheme are then based on an intuitive observation
that the normals calculated for a surface point will match more



Fig. 3: (left) Distant-lighting assumption is applied when the distance between the camera and target object is much greater
than the relative size of the target object. In this case, the parameters corresponding to distance and lighting direction for each
surface point will be assumed to be the same. (right) On the other hand, near-lighting assumption is applied when the distance
between the camera and target object is relatively small or the illumination from the light sources is non-uniform on the scene.
In this case, all parameters corresponding to each surface point cannot be assumed to be the same.

closely if the lighting model used is correct. If the normals for
many surface points are as close as possible but still off, given
a set of predicted values for the other unknown parameters,
then converting the model to a near-lighting model will lessen
the restriction of the distances between the light sources and
the surface points, allowing for more adjustment in calculating
the surface normals.

B. Image Depth Estimation

Generally, the distance of the robot to the scene is unknown.
While we can assume that the initial optimization scheme
assumes a distant-lighting model to account for less unknowns,
we still cannot accurately estimate what these distance values
should be set as by only using monocular camera information.
As shown in our previous work, we can use a forward-looking
single-beam echosounder to provide a more accurate initial
guess of the scene depth [5]. A single-beam echosounder
emits an acoustic wave in a cone shape and will return the
distance value of the most prevalent reflected signal back.
Thus, it is unclear where in the cone this distance value is
associated with, especially with larger distance values. One
can simply estimate that for the entire given viewing scene,
the distance between the camera/lights to the surface points
are proportional to the echosounder’s measurement – useful
for first iteration assumption of distant-lighting model.

C. Photometric Stereo Unknowns

The main unknowns that we are interested in estimating are
the normal vectors n for each visible surface point denoted
by its own image pixel and the depth Z of the scene point
relative to some plane parallel to the image plane.

Other unknowns include:
• distance between camera and each surface point |OP |,

|OP | =

√
(
uZ

f
)2 + (

vZ

f
)2 + Z2 (11)

where f is the camera’s focal length, and (u, v) is an
image pixel coordinate.

• distance between each light source and each surface point
|PSi|, if not obscured,

|PSi| =

√
(Xi −

uZ

f
)2 + (Yi −

vZ

f
)2 + (Zi − Z)2

(12)
• light direction relative to a light source and a surface point

l̂PSi
, or the angle between a light source and a surface

point cos(θi)

l̂PSi
=

(Xi − uZ
f , Yi −

vZ
f , Zi − Z)√

(uZf
2
+ ( vZf

2
+ Z2)

(13)

• and attenuation coefficients for direct signal βD and
backscatter βB .

D. Photometric Consistency

The PS problem consists of images taken under multiple
different light positions or intensities. Thus, the final estimated
values for the unknown parameters must lead to a photometric
(brightness) model that is as close to the observed brightness
values in the set of images. The objective function, also called
photometric consistency, minimizes the difference between the
predicted and the observed brightness values as follows:

o(βB , βD, C(λ),n, Z) =
NI∑
n=1

(In − I ′n(βB , βD, C(λ),n, Z))

(14)
where NI is the number of images taken in a specific camera
pose with different lighting positions and intensities.

VI. RESEARCH QUESTIONS AND PRELIMINARY RESULTS

As mentioned before, our main research questions are:
• R1: Can images taken with the light position in place,

but whose light intensity changes, be as informative as
images taken with the light position changing?

• R2: Can an object be well reconstructed using a PS
model, even if the images were taken while the robot was
moving?



R1 relates to hardware choices and the physical properties
of light and its travel. PS models generally perform better
when the distance between the camera and the light sources
increase [24], as an increase in distance between the camera
and light sources will decrease the amount of light rays that
may scatter back to the camera – the backscatter component
becomes less prominent. However, the size of the inexpensive
BlueROV2, which we use, as described in the next subsection,
is not large enough to make any meaningful impact on the
distance between the camera and the light sources. Thus,
backscatter will be significant. In addition, installing four
individually controlled lights is a waste of cable port usage
(i.e., it would take up 4 of the 14 penetrators of a typical
end cap on a BlueROV2). To minimize the number of lights
required, we will look into a PS model that considers how
different light intensities may change the scale of brightness in
the scene, but, more interestingly, it may also identify surface
patches whose brightness is at saturation – the reflected light
(brightness) will not increase with a stronger light intensity.

R2 leads to a major difference with respect to literature;
unlike previous works where the robot was settled on the
bottom [24], [25], our PS model is applied to an underwater
robot that is suspended in the water. The underwater robot
cannot always stay in place while it is suspended in water; it
will slightly move due to external water forces or motor usage.
We will look into the following: how robot movement can be
approximately estimated by short-term visual feature tracking,
how much robot movement corresponds to reconstruction
error, and how robot movement needs to be incorporated into
the PS optimization scheme.

A. Robot Setup

We used the BlueROV2, which was installed with the
Sony IMX322LQJ-C camera1 (originally included in the
BlueROV2) and the Ping echosounder2. The camera has a
resolution of 5 MP, a horizontal field of view (FOV) of 80°,
and a vertical FOV of 64°. The echosounder has a maximum
range of 30m and a cone angle of 30°.

There are two lights3 installed on each side of the robot,
whose intensities are controlled jointly and can be adjusted by
increments of 10% (max: 100%). Each light supports at max
1,500 lumens and the beam angle in water is 135°. In future
work, we will compare scene reconstruction results between
different lighting setups: 2 individual lights, 2 sets of 2 lights,
and 4 individual lights.

Light extrinsics will need to be calibrated, either approxi-
mated by hand or by a procedure using a white board or white
sphere of known dimensions and characteristics.

B. R1: Changing Light Intensity

The goal here is to substitute an image of the scene that has
a new light source position with an image with the same light

1https://www.bluerobotics.com/store/sensors-sonars-cameras/cameras/
cam-usb-low-light-r1/

2https://bluerobotics.com/learn/ping-sonar-technical-guide/
3https://bluerobotics.com/store/thrusters/lights/lumen-sets-r2-rp/

A B

C D

E F

TABLE I: Series of images where the BlueROV2 changes
light intensity from low to max brightness (A-F) while slightly
moving. Note, the black speck in a few of the images is from
a bubble on the clear dome end.

position, but with a change in brightness intensity. This would
free up the limited number of robot cable ports and minimize
the number of light sources required to calibrate.

While the change in light intensity should not provide
substantial photometric information, as it is simply changing
the scale of brightness in the scene, we did observe brightness
saturation. In the images, see Table I, there were areas on
the white sphere that were saturated, identified as Local
Diffuse Maxima (LDM) regions – image pixels whose local
brightness intensity is maximum due to the surface points’
normal vectors coinciding with the direction of the incident
light rays. With an increase in light source brightness, the
previous saturated pixels stayed constant, while the general
saturated area increased. We believe that this observation of
the LDM regions is key for integrating images with various
light intensities into the PS model system. It can also be used
as a constraint in case there are multiple optimal solutions

https://www.bluerobotics.com/store/sensors-sonars-cameras/cameras/cam-usb-low-light-r1/
https://www.bluerobotics.com/store/sensors-sonars-cameras/cameras/cam-usb-low-light-r1/
https://bluerobotics.com/learn/ping-sonar-technical-guide/
https://bluerobotics.com/store/thrusters/lights/lumen-sets-r2-rp/


to the objective function – this is similarly done by adding
discrete ranges to parameters, such as the albedo [25].

In addition, we are able to collect multiple images un-
der different light intensities – each light intensity output
is measured from 0% to 100% with increments of 10%.
Though, this might increase the number of images used in
the photometric consistency optimization scheme from the
traditional 3-4 images to about 10-20 images, depending on
the number of controllable light sources and ambient light.

Fig. 4: Due to robot movement, feature points will need to
be detected and matched across sequential images. The goal
will be to use surface points that are detected as feature
points in multiple images, such as P1. It will be important to
discard surface points from the framework that are incorrectly
matched, such as P2 and P ′2. Of course, some points will be
non-usable, as they are only detected once, such as P3.

C. R2: Non-Stationary Robot

As soon as the underwater robot moves, intentional or not,
it rebukes the main constraint of the PS model that the camera
must stay in place. The goal here is to either loosen the
constraints in the PS optimization scheme, as the distances
between robot and scene will slightly vary across images, or
include camera/light movement estimations in the parameter
estimation procedures.

We believe that with small robot movement and quick light
position or intensity changes, camera/light movement should
be minimal and easily calculated. Some possible approaches
are to apply strip-down versions of Simultaneous Localization
and Mapping (SLAM) systems, such as Monocular ORB-
SLAM [9] and SVO [28]. For example, ORB features are
known to be quick to calculate and match between sequen-
tial images, and ORB-SLAM was shown to work well in
underwater applications [5], [29]. If we collect a short and
informative sequence of images, all images should have an
overwhelming number of overlapping feature points – similar
to how a group of images correspond to a keyframe, due
to their feature point similarity. The camera movement can
be estimated if enough overlapping feature points among the
images are matched, as illustrated in Fig. 4. Though, we will
need to conduct experiments in simulation and in the pool to
analyze how robot movement affects the scene reconstruction
model and how much can estimated camera movement help
mitigate the reconstruction error.

One issue that we are looking into is that estimating robot
movement will lead to an ambiguous depth scale estimation.
As mentioned before, the monocular depth estimation can be
improved with an echosounder [5], but it might not be enough
to produce an accurate scene reconstruction model. The reason
is that the echosounder cone shape is not as tight as one would
like, so distance values can be arbitrary.

Another issue is that there is a good chance that a small
shift in robot movement and light change will cause major
differences in the photometric consistency function for cer-
tain pixel/surface points. These points need to be thoroughly
identified as deficient data points and be removed before they
affect the overall PS model assumptions and estimations. This
is a similar procedure done to remove shadow pixels.

Accordingly, with the robot movement as a constraint, an
initial image will be marked as the original, while all of the
other images will correspond to slight camera/light position
changes. If the feature points are accurately matched across
images – we should be able to calculate new distance values
and light directions for these surface points. Of course, this
approach might limit the number of surface points that can be
used in the PS object function.

VII. FUTURE STEPS AND GOALS

In the future, we would like to extend our analysis to more
thorough simulation experiments, pool/tank experiments with
various water murkiness (i.e., milk-to-water proportions), and
lake experiments. We plan to run comparison and validation
experiments using other sensory suits, including a stereo
camera and a mutlibeam sonar. Our final goal is to be able to
reconstruct large underwater scenes, such as a shipwreck.

One of our next steps includes introducing another under-
water robot into the system, such that it also has on-board
lights. However, each robot may control and know about its
own lights, but it will not directly know about the other robot’s
lights, except for estimated lighting intensity and position.

Overall, a solution to the photometric stereo model for
non-stationary underwater robots is a key step to our final
system for the next best view problem. Highly accurate scene
reconstruction is not important for us – we are interested in
a system that does not require a tight calibration or initial
setup for estimating camera position relative to the scene,
unlike systems such as ORB-SLAM [9], but also provides
information of the scene (model) and points the robot to new
directions of where to take more pictures, such that all key
images collected are taken under consistent lighting – perfect
for offline scene reconstruction.

VIII. CONCLUSION

We presented preliminary work on designing a photometric
stereo framework for non-stationary underwater robots – to
our upmost knowledge, a novel and unsolved problem. This
paper addressed two concerns: can changing light intensity be
as informative to the PS model as changing light position,
and can robot movement be quickly estimated and integrated
in the objective function for photometric consistency. We



showed that regions of brightness saturation (LDMs) across
multiple different images with various light intensities may
be advantageous in providing constraints when solving the PS
objective function. In addition, quick camera movement can be
calculated using ORB features or other strip-down SLAM and
visual odometry approaches. Ultimately, a photometric stereo
approach for non-stationary underwater robots have significant
impacts – it allows for low-cost AUVs to accomplish scene
reconstruction tasks with results on the same level as using
high-end sonars, it provides a suitable solution to vision-based
tasks under dynamic lighting conditions, and it opens up the
opportunity for more exploration, monitoring, and inspection
of various underwater structures.
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