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Abstract— There has been a decline in hard coral cover
on the Great Barrier Reef, due to environmental stressors
such as crown-of-thorns starfish (COTS) predation, cyclones
and increased ocean temperatures due to climate change.
Marine surveys are used to detect and monitor changes in reef
ecosystems and provide intelligence to authorities to inform
decision-making and mitigation strategies. Recent advances
in broad-scale survey methods, including use of autonomous,
remotely operated and towed underwater vehicles, have sig-
nificantly increased the speed and extent of marine surveys.
Real-time analysis of imagery from these systems enables on-
the-fly adjustment of survey paths and sampling efforts during
field operation. In particular, identification of various benthic
classes can be used to guide the robots towards regions of
interest, for example when searching for COTS. In this paper,
we investigate benthic habitat identification to solve this part
of the robot perception system. Our method involves training
neural networks to perform fine-grained semantic segmentation
from existing sparsely labelled underwater images. We use the
XL CATLIN Seaview Survey as a basis for our experiments
and establish a new train / test split and baseline accuracy for
this dataset.

I. INTRODUCTION

Marine surveys aim to identify and monitor reef status
changes, and were traditionally completed manually by ecol-
ogists [1]. Recent advances in broad-scale marine survey
methods have increased the range and accuracy of survey
data [2], [3], [4], [5]. The efficiency of broad-scale marine
surveys can be improved by dynamic adaptation of the survey
trajectory and/or sampling effort, based on real-time analysis
of imagery collected on-board [6].

Traditionally, ecologists collect photographs at intervals
along transects and then scale each image to a 1m by
1m quadrat [7]. Photo-quadrats are analysed by randomly
distributing points in the image and labelling into taxonomic
or morphological classes [8]. Approximately 300,000 images
can be collected per day using a towed underwater platform.
These images must then be annotated by domain experts.
Point labels are an efficient technique for labelling large
quantities of images and offer a middle ground between the
weak training signal of image-level labels and the intensive,
time-consuming and costly method of densely labelling every
pixel in each image [9]. Semantic segmentation is a dense
prediction task in which every pixel in a query image is
classified into one of a number of predefined classes [10].
Real-time semantic segmentation can inform guidance of a
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towed underwater platform towards areas with more inter-
esting information (Fig. 1), e.g. larger population of Crown
of Thorns starfish, the presence of bleached or otherwise
damaged coral, or abundance of macro-algae [11].

Fig. 1. Dynamic adaptation of towed underwater vehicle guidance based
on segmentation model outputs

Semantic segmentation is performed by a neural network
typically trained on densely labelled data in the form of
image-mask pairs, where every pixel in the training image
is assigned a class label. This paper compares methods and
makes recommendations for achieving dense segmentation
of benthic imagery using a neural network trained on sparse,
randomly distributed point labels instead of masks.

The XL CATLIN Seaview Survey dataset (referred to
as the ‘CATLIN’ dataset herein) is the largest publicly
available database of marine images curated by domain ex-
perts and consists of 1.1 million standardised photo-quadrat
images [12]. This work investigates semantic segmentation
architectures trained on sparse point-labelled images from
the CATLIN dataset. After reviewing existing work on
segmentation of underwater imagery and approaches for
training networks from sparsely labelled imagery in Section
II, we review existing underwater datasets in Section III
and outline our proposed train/test split for the CATLIN
dataset. We present our fine-grained segmentation approach
and methodology in Section IV. We evaluate and compare
three architectures, analyse the impact of sampling strategies
on training with imbalanced data and introduce a novel
sampling strategy (Section V). The use of ground truth
label propagation as a pre-processing step is analysed and
a simple, computationally efficient method is introduced
(Section V). Finally, we establish the baseline accuracy for



fine-grained segmentation of the CATLIN imagery (Section
V) and discuss our findings in Section VI.

II. RELATED WORK

Automating the analysis of underwater imagery is an
active field of research at the intersection of the computer
vision and marine biology communities. This section reviews
advances in semantic segmentation of underwater imagery
and recent approaches for training models from sparse or
weak labels.

A. Segmentation of Underwater Imagery

There are many existing approaches for classification of
coral images [13], [14], [15], [16], [17], [18], [19], [20].
The CATLIN dataset [12] was used to train a VGG-16
convolutional neural network (CNN) to classify patches
of CATLIN imagery [21]. The authors achieved a 97%
agreement between the model’s and an expert’s estimations
of benthic abundance, however the results of the classifica-
tion task itself were not published [21]. There are limited
approaches for pixel-wise segmentation of benthic imagery
(such as [22]), and even fewer are trained from sparse point
labels. Islam et al. developed a segmentation method and
contributed a custom dataset with human-generated segmen-
tation masks, however the segmentation classes were coarse-
grained e.g. “background”, “robot”, “plant”, “human” [23].
Pavoni et al. performed semantic segmentation of ortho-
mosaic benthic images using a Bayesian CNN trained from
human-generated polygons [24]. The work most similar to
ours is called ‘CoralSeg’, which investigates segmentation
of corals from sparse point labels [25]. The authors build
on their earlier work in [26] and use a multi-level super-
pixel approach to propagate the ground truth and then train
on augmented dense masks, as discussed in Section II-C. A
review of neural network methods for recognition of marine
benthos highlighted the relative lack of approaches for fine-
grained pixel-wise segmentation as opposed to frame level
classification [27].

Coral species recognition is complicated by variation in
the size, colour, texture and shape of corals within the
same class, and by the difficulty in discerning boundaries
between instances [13]. The visual traits of corals are par-
ticularly challenging due to the plasticity of forms, lack of
shape definition, intricacy and density of growth and the
varying scale of discriminative features [21]. The resolution
of the labels introduces in-class variability as one label
could describe several morphologically diverse species [21],
highlighting the importance of the fine-grained segmentation
case. Label resolution is especially critical for algae as
there are approximately 630 species on the Great Barrier
Reef alone, making functional grouping of species an im-
portant consideration [28]. Environmental and geographical
conditions impact the morphology of coral reef benthos, as
increased depth encourages growth structure to maximise
light capture [21]. For these reasons, segmentation of fine-
grained benthic classes is a difficult machine learning task
which is under-explored in the existing literature.

B. Weakly Supervised Segmentation

Weakly supervised semantic segmentation refers to the
task of generating a dense pixel-wise mask from a model
which has been trained on weak labels [29]. These labels
could take the form of bounding boxes, polygons, scribbles,
point labels or whole image labels [29]. Bridging the gap
between whole image labels and pixel-wise segmentation has
attracted a large amount of research effort, however the gap
between point based labels and segmentation has comparably
fewer approaches.

Bearman et al. used a single point per object to train a
segmentation architecture based on VGG-16 [9]. They added
a convolution layer at the output corresponding to the number
of classes and then a deconvolution layer to bilinearly
upsample and obtain a mask [9]. They also incorporated an
objectness prior and found an improvement in the boundaries
of their object segmentation [9]. This approach cannot be
applied to the context of coral segmentation because in this
setting there is no background and foreground, all pixels
in a photo-quadrat image must be designated a class. The
nature of randomly placed points also means that there could
be many classes present in the image which have not been
labelled, nullifying the assumption that every “object” has
a labelled point. Wang et al. used a U-Net architecture to
segment cropland from satellite images [30]. Their method
was trained using one randomly placed point label in each
image and they determined that the architecture was able
to achieve greater than 85% accuracy when more than
100 training examples were provided [30]. We extend this
approach to enable training for the fine-grained multi-class
and multi-label case and present results using this method.

C. Label Augmentation with Super-pixels

Friedman proposed a super-pixel method for using existing
underwater photo-quadrat point-labelled images to train a
pixel-wise segmentation network [31]. They assumed that
homogeneous regions within an image belonged to a super-
pixel and used the mean-shift segmentation and edge detec-
tion algorithm to segment images before consolidating super-
pixels with point labels [31]. The labelled super-pixels were
used to extract LBP, colour and shape descriptors which were
used for classification with a support vector machine with a
radial basis function [31]. Yu et al. proposed an iterative
approach which used random point labels as input and a
CNN to extract features before leveraging Latent Dirichlet
Allocation (LDA) to generate additional labels to augment
the original labels for a second round of training [32]. Yu
et al. presented a method which used the Simple Linear
Iterative Clustering (SLIC) algorithm to create super-pixels
based on colour and therefore extra labels by propagation
[33]. They implemented a coarse-to-fine approach to reduce
computation time and only performed segmentation on the
most likely areas of coral [33]. This approach considered
five broad classes: Coral, Red Algae, Green Algae, Rock
and Other [33]. Alonso et al. developed CoralSeg based on
the DeepLabv3+ architecture [25]. The network was trained



on augmented ground truth obtained using an iterative, mul-
tilevel approach to super-pixels [26]. This method generated
super-pixels at a number of levels and assigned known labels
to the super-pixels at those locations. The different levels
were combined to “fill-in” the image, thus propagating the
ground truth labels across the whole image [26]. The final
number of super-pixels in the augmented ground truth mask
poses a critical trade-off between maintaining the accuracy of
the super-pixels and filling in the image with the propagated
labels [26]. This method is computationally expensive as it
relies on repeated generation of super-pixels. For an image of
1024x1024 pixels, the computation time was 113.56s. In this
paper, we propose a simple, computationally efficient method
of propagating point labels using the Delaunay triangulation
of the points.

III. DATASETS
A. Existing Coral Datasets

There are a number of coral datasets (summarised in
Table I) which have previously been used to assess and
demonstrate the performance of deep learning approaches
for underwater detection, classification or segmentation. The
CATLIN dataset is the largest expert-labelled dataset with the
largest number of fine-grained classes, and is therefore ideal
for comparison of methods for fine-grained segmentation of
underwater imagery.

B. Dataset Preparation

The CATLIN dataset consists of 1.1 million photo-quadrat
images collected at nine locations worldwide [12]. A subset
of 11,387 images were labelled using randomly placed
points, yielding 858,257 labels [12]. Images were collected
from a top-down viewpoint and scaled to 1m by 1m of the
seafloor [12]. The labels are provided as a hierarchy, with a
total of 228 specific benthic classes which are merged into
62 classes and 5 broad super-classes (Hard Coral, Soft Coral,
Algae, Invertebrates and Other) [12]. An example CATLIN
image with point labels is in Fig. 2.

Fig. 2. Test image from CATLIN dataset with supplied point labels (best
viewed in colour)

Datasets containing fine-grained classes often exhibit the
long tail distribution problem, in which there are a large num-
ber of classes with a very small number of training examples.

The number of samples in each of the 62 fine-grained classes
in the CATLIN dataset is extremely imbalanced, with a class
imbalance ratio of ρ = 4, 700. The class imbalance ratio is
the proportion of the number of samples in the largest class
to the number of samples in the smallest class [42].

It was necessary to consider the long tail distribution
of the dataset when forming a training/test dataset split.
The CATLIN dataset was released with a random 20%
training/test split, however this split did not consider class
frequencies. The smallest class in the test dataset contained
only three examples. Using this dataset split for evaluation
of models would result in misrepresentation of performance.

The pronounced class imbalance prevents creation of a
completely balanced test dataset. However, we propose a
new training/test dataset split which considers the class
frequencies and allows fairer evaluation of model results.
We enforce a minimum of 20 data points per class in the
test dataset and prescribe that 20% of the images collected
at each of the nine geographical locations be used for testing.
The details of our proposed test dataset are released to enable
future work to directly compare with our baseline.

IV. METHOD

We use PyTorch [43] and Python 3.7 to design our
stacked fully convolutional network. The number of filters at
each consecutive layer is controlled by a single parameter,
which we define as 1.05 for these experiments. Depth-
wise separable convolutions [44] were introduced with the
popular Xception architecture and consist of a ‘depth-wise’
convolution followed by a ‘point-wise’ convolution (Fig.
3). The point-wise convolution is a 1x1 convolution which
projects the channels from the depth-wise convolution into a
new channel space [44]. Separable convolutions significantly
decrease the number of model parameters required [44]. In
our architecture, the stacked depth-wise separable convolu-
tions are followed by two fully convolutional layers with
kernel size 1x1 (Fig. 4), designed to step down the filters to
64 and then the number of classes (in this case, 62).

a) Normal convolution b) Depth-wise separable convolution [44]

Fig. 3. Comparison of normal and depth-wise separable convolutions

The network was trained on a receptive field size of
51x51 pixels around each label, in batches containing 16
samples. The model was trained using the Categorical Cross-
Entropy loss function, where only known pixels were used
in the calculation. The Adam optimiser [45] was used with
an initial learning rate of 0.0001. The learning rate was
halved five times, each time after five epochs without an
improvement in the validation loss. The training was stopped



TABLE I
SURVEY OF PUBLICLY AVAILABLE DATASETS FOR MARINE SPECIES

Paper or Dataset Name Year Viewpoint Classes Images Annotations
BENTHOZ-2015 [34],[35] 2015 Top-down CATAMI hierarchy

(148 classes)
407,968 expert annotations of
9,874 images

Point-based

SUIM dataset [23] 2020 Oblique 8 coarse grained
categories

1,525 train, 110 test pairs of
images and masks

Segmentation
masks

Moorea Labeled Corals
(MLC) [13]

2008 Top-down 9 classes, 5 coral
genera and 4 non-coral
classes

400,000 human expert
annotations on 2,055 coral reef
survey images

Point-based

Pacific Labeled Corals
(overlap with MLC)

2005-
2012

Top-down 20 classes 251,988 expert annotations on
5,090 coral reef survey images

Point-based

CoralNet [36] To
present

Mainly top-
down

User specified for every
source

1.6 million in total, all labelled
using crowd-sourcing

Point-based

XL Catlin Seaview Survey
[12], [37]

2012-
2018

Top-down 228 in total, 62
merged classes, 5
broad super-classes

1.1 million photo-quadrat
images in total, 11,387 global
labelled images, yielding
858,257 expert annotations

Point-based

EILAT [38] 2004 Top-down 8 classes 1,123 patches Patch level
EILAT Mixx [25] Top-down 10 classes 23 for training, 8 for testing Point-based
Mosaics UCSD [39] 2017 Top-down 35 classes 4,193 for training, 729 for

testing
Segmentation
masks

RSMAS [17] 2017 Top-down 14 coral classes 766 patches Patch level
StructureRSMAS [16] 2019 Mainly

oblique,
variety

14 coral structure
types

409 Image level

LifeCLEF Coral Challenge
2019 [40]

2019 Top-down 13 classes 240 images with 6,670
substrates annotated

Bounding boxes
and bounding
polygons

Tasmania Coral Point Count
Dataset [41]

2010 Top-down 36 classes 1,000 each with 50 points Point-based

after the learning rate was dropped five times, or after a
maximum of 300 epochs.

Class imbalance was mitigated using our proposed ‘Mid-
point Sampling’ method (discussed in Section V-A.2). Our
approach achieved a class-weighted overall precision of
52.7% on the CATLIN dataset.

Fig. 4. Architecture diagram for our stacked convolution model

V. RESULTS

Precision and recall were used for evaluating the perfor-
mance of the models. The precision and recall were averaged
across the 62 classes (‘Macro-Averaged’) and also averaged

using class weights based on the number of samples for each
class in the test dataset (‘Weighted’). As the test dataset
was not balanced, the weighted metrics provide a better
evaluation of model performance. The best model was the
stacked convolutional network with our novel ‘midpoint-
sampling’ strategy, with a weighted precision of 57.2% and
recall of 35.6% when evaluated on our proposed test split of
the CATLIN dataset.

A. Ablation Studies

Ablation studies were performed to analyse the impact of
the sampling strategy used with the stacked fully convolu-
tional networks and the impact of the Delaunay triangulation
propagation for the U-Net architecture.

1) Network Architectures: Three architectures were com-
pared: the stacked network presented in Section IV, a two-
headed stacked network and an encoder-decoder architecture.
Both stacked networks were trained using mid-point sam-
pling (Section V-A.2).

The two-headed network combines the fine-grained class
and the super-class for each training point. The architecture
was comprised of stacked depth-wise separable convolution
layers and two separate “heads” to predict logits for the fine-
grained and super-class (Fig. 5).

An encoder-decoder architecture based on the U-Net in
[30] was trained using a sparse Focal loss [46]. Focal
loss down-weights samples which are easily classified and
focuses on more difficult examples [46]. Class weights for



Fig. 5. Architecture diagram for our stacked convolution model with two
heads

the focal loss were calculated by taking the maximum class
frequency and dividing by the frequency of each class.

The inclusion of the broad super-classes in the two-headed
network yielded similar results as the single-headed network
(Table II), suggesting that the broad classes may not improve
the model’s ability to learn useful features for fine-grained
classes. The inclusion of more specific classes as a second
training signal may be more effective, and we intend to
investigate this in future work.

TABLE II
EFFECT OF NETWORK ARCHITECTURE ON TEST PERFORMANCE

Architecture Macro Prec./Rec. Weighted Prec./Rec.

U-Net with focal loss 10.6% / 22.5% 46.5% / 11.1%
Two headed network 16.1% / 20.3% 55.3% / 32.5%
Stacked network 18.7% / 25.0% 57.2% / 35.6%

2) Sampling Strategy: The effect of sampling strategy
when training the stacked network was investigated. A
common method for mitigating class imbalance is to under-
sample larger classes such that they contain the same number
of samples as the smallest class [42]. Alternatively, the
smallest classes could be over-sampled such that all classes
have the same number of examples as the largest class [42].

We determined that in the case of fine-grained segmenta-
tion of benthic classes, it is undesirable to enforce balance
between the classes because it creates an unrealistic repre-
sentation of species abundance, resulting in lower accuracy
(Table III). Training without sampling also resulted in lower
precision, because in this case the model ignored 61.3% of
the classes at inference time and instead favoured larger
classes such as the Epilithic Algal Matrix (EAM), which
comprises 49.0% of the training dataset.

Our novel method, which we call ‘Mid-point Sampling’,
is a combination of under- and over-sampling and enables
the user to specify how balanced the classes should appear
via a single parameter. This parameter is the desired upper
and lower bound of the class frequency distribution i.e. if
0.2 was chosen, the smallest 20% would be over-sampled
and the largest 20% would be under-sampled to bring the
class frequencies with a middle range of 60% (Fig. 6). This

parameter is tuned by the user based on the class imbalance
ratio of the dataset. Our novel sampling strategy is a simple
way of preserving the natural distribution of species, while
encouraging the model to learn features of all classes in the
training dataset. This method achieved a weighted precision
of 57.2% (Table III).

TABLE III
EFFECT OF SAMPLING STRATEGY ON TEST PERFORMANCE

Sampling Strategy Macro Prec./Rec. Weighted Prec./Rec.

No Sampling 14.3% / 8.6% 45.7% / 53.5%
Balanced under-sampling 5.7% / 15.1% 41.7% / 16.3%
Midpoint sampling 18.7% / 25.0% 57.2% / 35.6%

3) Propagation of Point Labels using Delaunay Triangu-
lation: Extending the U-Net architecture discussed in Sec-
tion V-A.1, the impact of label propagation was investigated.
Delaunay triangulation is a method of joining points into
triangles such that triangles do not overlap and no point
is inside the circumcircle of any triangle [47]. Following
triangulation of the random point labels, triangles were
selected only if all three vertices belonged to the same class.
The class label was propagated to pixels inside the triangle
(Fig. 7). Propagation of point labels for a 1200x1200 pixel
image took 0.465 seconds on an Intel Core i7-6500. The
number of training points increased from 660,939 labelled
pixels in the training dataset to 932,612,517, however there
still existed a similar distribution of class frequencies even
after propagation, resulting in comparable overall weighted
accuracies for both models (Table IV).

TABLE IV
EFFECT OF LABEL PROPAGATION ON TEST PERFORMANCE

Architecture Macro Prec./Rec. Weighted Prec./Rec.

U-Net with label
propagation and focal loss 8.1% / 16.9% 45.3% / 5.4%

U-Net with focal loss 10.6% / 22.5% 46.5% / 11.1%

B. Inference on Images

The trained models were applied to images in our proposed
test split of the CATLIN dataset. Pixels were classified by
assigning the label corresponding to the maximum value of
the Softmax function when applied to the output of the final
layer of the model. The pixel classifications were visualised
using a colour-coded mask, where labels on the left of
each image (in pink and green) correspond with fine-grained
hard coral classes, classes in shades of red correspond to
soft corals, blue denotes invertebrates and shades of grey
represent sub-classes in the ‘other’ super-class (e.g. sand).
The visualisations in Fig. 8 correspond with outputs for the
test image in Fig. 2.

VI. DISCUSSION

There are benefits and drawbacks for the architectures
compared: the stacked network enables inference on any
size and shape of input image regardless of aspect ratio
or resolution. This is beneficial for photo-quadrat imagery



a) Example class frequencies b) Class frequencies after mid-point sampling with x=0.2

Fig. 6. Our proposed ‘mid-point sampling’ method

Fig. 7. Our proposed label propagation method using Delaunay trian-
gulation. Pixels inside the shaded regions are labelled as the class of the
vertices.

datasets, which often contain a range of image dimensions
due to scaling [12], and for compatibility with a range of
cameras.

The U-Net approach enabled ground truth propagation
using the Delaunay triangulation of the point labels. While
the number of training samples was significantly increased,
the frequency of classes was comparable, resulting in similar
precision as the U-Net without propagation (Table IV). Lim-
iting the Delaunay propagation to under-represented classes
and constraining the size of triangles used for propagation
will be investigated in future work. It is likely that the stacked
networks outperformed the U-Net architectures because con-
sidering each point as an individual training sample allows
for re-sampling to mitigate the long-tail distribution problem.
The increased depth of the stacked network when compared
to the U-Nets may have resulted in learning superior feature
representations. Future work will include trials of additional
encoder-decoder architectures to further explore this finding.

We find that our novel mid-point sampling approach is
effective for the marine application because it does not

remove all variation in species abundance in the dataset.
When classes are balanced during training, the model is
rewarded by predicting rare classes more frequently, resulting
in higher recall but lower precision for those classes. We
determined that enforcing balance between the classes results
in over-prediction of the rare classes leading to unrealistic
inference masks. This can be seen in Fig. 8, where balanced
models (sub-figures b, e and f) all output a large number of
pixels classified as invertebrates (depicted in blue), which is
not correct based on the corresponding point labels provided
in Fig. 2. The 15 invertebrate classes are rare in the CATLIN
dataset, comprising only 4%. The unbalanced model (Fig. 8)
exhibits the opposite problem and classifies the majority of
the image as the class ‘EAM’, which forms 49.0% of the
training dataset. In the case of fine-grained segmentation,
there exists a critical balance between encouraging the model
to predict all of the classes while maintaining a realistic
representation of rare class frequency.

The inclusion of super-class information in the two-headed
stacked network resulted in similar performance as the
single-headed stacked network. The CATLIN dataset also has
a label set consisting of 228 classes. Future work will involve
inclusion of these labels alongside the 62 class labelset to
determine whether this additional representation improves
segmentation accuracy.

VII. CONCLUSION

This work has implemented a neural network for segmen-
tation of fine-grained benthic classes in underwater marine
imagery. We define a new train/test data split for the 62
class version of the CATLIN dataset and establish baseline
accuracy. Our approach was a deep stacked fully convolu-
tional network which used depth-wise separable convolu-
tions, trained using our novel midpoint sampling method. We
achieved an overall precision of 57.2% when weighted based
on the frequency of classes in our proposed CATLIN test
dataset. The approaches presented could be used in training
dense segmentation networks for fine-grained segmentation
of sparsely labelled datasets in any field.



a) Stacked network with unbalanced dataset b) Stacked network with balanced dataset

c) Stacked network with mid-point sampling d) Two-headed stacked network with mid-point sampling

e) U-Net with focal loss f) U-Net with focal loss and Delaunay triangulation ground truth propagation

Fig. 8. Comparison of model inferences on test image (best viewed in colour)
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