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Abstract— Factor graphs are the dominant paradigm for
modeling state estimation tasks in mobile robotics, as they
afford both a convenient modular modeling language and fast,
scalable inference algorithms. However, most state-of-the-art
factor graph inference approaches rely on local optimization,
which makes them susceptible to converging to incorrect esti-
mates. Recent work has led to the design of novel certifiable op-
timization algorithms capable of efficiently recovering verifiably
globally optimal estimates in practice. However, Despite these
advantages, the widespread adoption of certifiable estimation
methods has been limited by the extensive manual effort
required to custom-design appropriate relaxations and efficient
optimization algorithms. To address these challenges, in this
paper we present a method that leverages the same factor
graph and local optimization framework widely used in robotics
and computer vision to design and deploy a broad range of
certifiable estimators. We describe how to implement lifted
versions of the variable and factor types typically encountered
in robotic mapping and localization problems. The result is a
set of certifiable factors that enables practitioners to develop
and deploy globally optimal estimators with the same ease as
conventional local methods. Experimental results validate our
approach, demonstrating global optimality comparable to that
achieved by state-of-the-art certifiable solvers.

I. INTRODUCTION

State estimation is a fundamental problem in the field of
robotics [1]. This task aims to recover the true state (e.g.,
robot pose, environment structure) from noisy measurements
obtained from various sensors. Typical applications include
SLAM (Simultaneous Localization and Mapping) [2] and
SfM (Structure from Motion) [3]. The major challenge lies
in the non-convexity and high dimensionality of the problem.

Factor graphs [4] are a powerful framework for modeling
robotic state estimation problems. They leverage the insight
that these problems are typically composed of a limited set
of recurring measurement types, such as visual, inertial, or
LiDAR observations, each represented by a corresponding
measurement model called a factor. Given these elementary
factors, more complex and high-dimensional state estimation
tasks can be easily and naturally expressed by composing
these simple constituent parts.

In robotics and computer vision applications, inference in
factor graphs is typically performed using maximum likeli-
hood or maximum a posterior inference. These formulations
reduce the problem of statistical estimation to optimization.
This is advantageous because the use of sparsity-exploiting
smooth nonlinear programming algorithms enables even
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large-scale factor graphs to be processed very efficiently. At
the same time however, this efficiency comes at the cost of
reliability: since essentially all real-world state estimation
problems in robotics are nonconvex, and standard nonlinear
programming methods perform only local optimization, so-
lutions obtained through these methods are not guaranteed
to be globally optimal.

Factor graph optimization is commonly performed using
local search techniques, such as gradient-based or Newton
methods [5]. However, due to the inherent non-convexity
of the objective function, solutions obtained through these
methods are not guaranteed to be globally optimal. Al-
though accurate results can often be achieved with good
initialization [6], these approaches lack formal guarantees—a
significant limitation in safety-critical applications where
reliability is paramount.

Certifiable estimation refers to a class of methods that
provide formal guarantees of global optimality by relax-
ing non-convex problems into convex formulations. Under
moderate noise conditions, these relaxations are often tight,
yielding exact solutions. While certifiable estimators offer
strong theoretical guarantees, a key limitation lies in the
need to manually construct suitable convex relaxations and
develop specialized solvers for efficient computation. More-
over, existing implementations typically lack modularity and
code reusability. Consequently, at present designing and
implementing certifiable estimators for particular estimation
tasks requires significant manual effort. This workflow is
substantially less user-friendly compared to well-established
factor graph-based libraries such as GTSAM [4] and g2o [7].

In this paper, we show that a broad class of certifiable
estimators can be easily designed and deployed within the
standard factor graph and local optimization paradigm widely
adopted in robotics and computer vision. Specifically, we
show how to implement lifted (i.e., relaxed) versions of
common variable and factor types for mapping and lo-
calization tasks. Our approach is implemented directly on
top of GTSAM, a widely adopted library for robotics state
estimation. Extensive experiments on both synthetic and real-
world SLAM datasets showed that the proposed approach
preserves the same global optimality guarantees as existing
state-of-the-art certifiable solvers [8]. In summary, the key
contributions of this work are:

• We introduce a modular framework that streamlines the
design and deployment of certifiable estimators within
the factor graph paradigm. The proposed approach
leverages lifted variables and factor types specifically
tailored to classical robotic state estimation problems,



enabling seamless integration with existing factor graph
optimization workflows.

• We show experimentally that our modular approach
recovers the same (globally optimal) solutions as ex-
isting hand-crafted certifiable solvers, and does so with
a similar computational efficiency.

• To facilitate further research, we will release the full
implementation as open-source software.1

II. NOTATION

Let Id ∈ Rd×d denote the d × d identity matrix. The
operator vec(·) denotes the column-wise vectorization of
a matrix. The Frobenius norm is defined as ∥A∥F =√
⟨A,A⟩

F
. We denote by Sym(n) the set of real n × n

real symmetric matrices. The operator BlockDiagd×d(M)
denotes the block-diagonal matrix obtained by extracting all
d× d diagonal blocks of M and zeroing out all off-diagonal
entries. The following smooth manifolds are frequently used
in this paper:

• The orthogonal group:

O(d) ≜
{
R ∈ Rd×d | R⊤R = Id

}
(1)

• The special orthogonal group:

SO(d) ≜
{
R ∈ Rd×d | R⊤R = Id, det(R) = 1

}
(2)

• The special Euclidean group:

SE(d) ≜
{
(R, t) | R ∈ SO(d), t ∈ Rd

}
(3)

• The Stiefel manifold:

St(p, d) ≜
{
Y ∈ Rp×d | Y ⊤Y = Id

}
(4)

• The unit sphere:

Sp−1 ≜
{
r ∈ Rp | ∥r∥22 = 1

}
(5)

Note that the Stiefel manifold plays a central role in
certifiable estimation, as both the orthogonal group and the
unit sphere are special cases of the Stiefel manifold:

O(d) = St(d, d), and Sp−1 = St(p, 1).

III. RELATED WORK

In this section, we review prior work on factor graph
representations of state estimation tasks (Section III-A), the
Maximum Likelihood Estimation (MLE) in factor graphs
(Section III-B), and the certifiable estimation (Section III-
C).

A. Factor Graph Representation of the State Estimation
Problem

Factor graphs [4] offer a versatile and computationally
efficient representation for a wide range of robotic state
estimation tasks. Formally, a factor graph is a bipartite graph
G = {F , X, E}, where F is a set of factors (corresponding
to likelihoods for a set of measurements), X is the set of
variables (parameters to be estimated), and the edge set E

1https://github.com/NEU-RAL/CertifiableFactors

models which parameters are arguments to which factors. Let
X = {x1, x2, . . . , xn} represent the set of latent variables
(i.e., the poses, or points) to be estimated, and let Z̃ ={
Z̃1, Z̃2, . . . , Z̃m

}
denote the corresponding collection of

observed sensor measurements. Each node in the variable
set X corresponds to an unknown state variable xi, while
each factor fi ∈ F encodes a measurement Z̃i that imposes
a constraint on the connected variables. We usually assume
that the measurement Z̃k is sampled from a probabilistic
generative model of:

Z̃k ∼ pk (· | Xk) ∀k ∈ [m] (6)

where Xk ⊆ Θ represent a subset of the full state variable
set Θ that contributes to the generation of a specific mea-
surement.

The generative model above captures the phenomenon of
sparsity: while the complete collection of variables X may
be very large, each individual measurement Z̃k typically
only depends upon a very small subset of these states. As
a result, under the assumption of independent measurement
noise, the joint measurement likelihood p(Z̃ | X) admits the
following factorization as a product of ”simple” measurement
likelihoods:

p(Z̃ | X) =

m∏
i=1

pk

(
Z̃k | Xk

)
(7)

Moreover, even in large-scale and complex estimation
tasks, the individual factors pk(Z̃|X) appearing in 7 often
belong to a very small set of parametric families mod-
eling specific sensing modalities (e.g. camera, IMU, or
LiDAR measurements). Consequently, even complex, high-
dimensional instances of 7 can be constructed using a small
number of variable and factor types, highlighting the inherent
modularity and scalability of the factor graph representation.

B. Maximum Likelihood Estimation in Factor Graphs

Maximum Likelihood Estimation (MLE) provides a princi-
pled way to convert statistical estimation problems [1] into
optimization problems [4]. In brief, the goal of maximum
likelihood estimation is to find a point estimate XMLE in X
of the latent state X that maximizes the joint likelihood of
the available data Z̃:

Solving such problems is to find a point estimate X̂MLE ∈
X of the latent state X . that maximize the joint likelihood
of all independent measurement functions:

X̂MLE(Z̃) ≜ argmax
X∈X

p
(
Z̃ | X

)
(8)

In practical applications, it is standard to reformulate the
maximum likelihood estimation problem as a minimization
task by considering the negative log-likelihood. This trans-
formation is justified by the fact that the logarithm is a
monotonically increasing function, making the maximiza-
tion of the likelihood equivalent to the minimization of its
negative logarithm. Substituting the factorization (7) into
the right-hand side of (8) and applying the negative loga-
rithm, we see that maximizing the joint likelihood p(Z̃|X)



is equivalent to minimizing the sum of the negative log-
likelihoods lk(Xk; Z̃k) ≜ − log p(Z̃k | Xk) of the individual
measurements in (6):

X̂MLE(Z̃) ≜ argmin
X∈X

m∑
k=1

lk

(
Xk; Z̃k

)
(9)

Where each summand lk

(
Xk; Z̃k

)
denotes the negative log-

likelihood, which will also be referred to as a factor in the
following discussion.

Maximum likelihood estimation is attractive because it
affords a fast and scalable approach to statistical inference,
especially in complex, high-dimensional problems [9]. This
advantage is largely due to the fact that MLE typically
leads to smooth nonlinear least-squares problems, which can
be efficiently solved using sparsity-aware methods such as
gradient descent or quasi-Newton techniques [5].

In addition to algorithmic efficiency, MLE also benefits
from practical usability. Specifically, the ease of implemen-
tation enabled by modern optimization frameworks has made
it accessible for large-scale applications. Modern libraries
like GTSAM [4], g2o [7], and Ceres [10] simplify im-
plementation by automatically generating and solving the
optimization problem from a factor graph model, eliminating
manual derivation and accelerating development. These fea-
tures make MLE both theoretically appealing and practically
effective for large-scale robotic estimation.

However, despite these strengths, it is important to recog-
nize a key limitation: these local methods solve inherently
non-convex problems and therefore cannot guarantee certifi-
ably globally optimal solutions.

C. Certifiable Estimation

As an alternative to local optimization, recent work has led
to the development of a novel class of certifiable estimators
that are provably capable of efficiently recovering globally
optimal solutions of state estimation tasks in many practical
settings [11]–[14].

In brief, these methods are based upon approximating
a challenging (nonconvex) maximum likelihood estimation
problem with a convex relaxation that can be solved to global
optimality in practice [15]. Under moderate noise levels,
these relaxations are frequently exact [8], [11], enabling the
recovery of a globally optimal solution to the original (non-
convex) estimation problem. In this subsection, we briefly
review current state-of-the-art approaches to implementing
these methods.

1) Constructing SDP with Shor’s relaxation: Usually,
certifiable estimators typically require substantially more
manual effort to design and implement compared to standard
factor graph-based techniques. The standard approach to con-
structing these involves formulating the original estimation
problem as a quadratically constrained quadratic program
(QCQP), an optimization problem of the form:

min
X∈Rn×k

〈
Q,XX⊤〉

s.t.
〈
Ai, XX⊤〉 = bi, i = 1, . . . ,m

(10)

where Q ∈ Sym(n) and Ai ∈ Sym(n) are symmetric
matrices, and bi ∈ Rm.

Given a QCQP of the form (8), we can construct a cor-
responding convex relaxation using Shor’s relaxation [16].
In brief, the main idea behind Shor’s relaxation is to replace
the (rank-k) symmetric outer product XX⊤ in (8) with a
generic positive-semidefinite matrix Z of the same size; this
produces the following semidefinite program (SDP):

min
Z∈Sym(n)

⟨Q,Z⟩

s.t. ⟨Ai, Z⟩ = bi, i = 1, . . . ,m

Z ⪰ 0

(11)

2) Burer–Monteiro Factorization: However, large-scale
SDPs are hard to solve using standard off-the-shelf tools.
Therefore, current state-of-the-art certifiable estimators rely
upon Burer-Monteiro factorization ((BM) [17], [18]. The BM
method reduces SDP complexity by leveraging

by leveraging the fact that large-scale SDPs often
have low-rank solutions, i.e., solutions (Z∗) for which
rank(Z∗) ≪ n. The main idea behind this approach is to
replace the original decision variable Z with an assumed low-
rank factorization of the form Z = (Y Y ⊤), for Y ∈ Rn×p,
naturally enforcing Z ⪰ 0 and rank(Z) ≤ p. The resulting
rank-p Burer–Monteiro factorization formulation is:

min
Y ∈Rn×p

〈
Q,Y Y ⊤〉

s.t.
〈
Ai, Y Y ⊤〉 = bi, i = 1, . . . ,m

(12)

Since p≪ n in practice, the resulting problem operates in a
significantly lower-dimensional state space compared to the
original SDP, which greatly accelerates the solution of large-
scale estimation problems.

3) Verification: The Burer–Monteiro factorization accel-
erates the solution of large-scale SDPs by reducing di-
mensionality. However, since the rank-p relaxation in (12)
remains non-convex, global optimality of the solution can-
not be guaranteed in general. Nevertheless, there exists an
efficient procedure to check whether a given solution is
globally optimal, which is referred to as verification [19].
The verification step attempts to certify global optimality of
current local optimal solution Y ⋆ by constructing the cer-
tificate matrix C based on the Karush-Kuhn-Tucker (KKT)
conditions [8]:

C ≜ Q− 1

2
BlockDiagd×d

(
QY ⋆Y ⋆⊤ + Y ⋆Y ⋆⊤ Q

)
(13)

where Q ∈ Sym(n) is the data matrix as showing in (10).
Global optimality is certified if the smallest eigenvalue λmin

of C is nonnegative (i.e., C is positive definite).
4) Riemannian Staircase: Since the minimum rank r⋆ =

rank(Z⋆) at which we can recover an optimal solution
Z⋆ = Y ⋆Y ⋆⊤ of (11) from (12) is typically unknown, the
Riemannian staircase strategy [18] is commonly employed
to solve a sequence of rank-p Burer–Monteiro relaxations.
This repeated until global optimality is certified, as outlined
in Algorithm 1. At each level p, rank-p Riemannian opti-
mization is used to obtain a candidate solution. Verification



Algorithm 1: Riemannian Staircase
Input: Initial feasible point Y ∈ Rn×p for rank-p

Burer-Monteiro factorization (12)
Output: A feasible estimate X̂ for problem (10),

and the lower bound f∗
SDP on (12)’s optimal

value.
function RiemannianStaircase(Yp):

while true do
// Find critical point of (12)
Y ⋆
p ← LocalOptimization(Yp)

// Construct certificate matrix in (13)
C ← CertificateMatrix(Yp)
// Compute minimum eigenpair of certificate

matrix C
(λmin, vmin)← MinimumEigenpair(C)
if λmin > 0 then

// Found low-rank factor for optimal
solution of (12)
Ŷ ← Yp;
f∗
SDP ← fp;

break;
// Saddle escape
else

p← p+ 1;
// Construct second-order descent

direction
Ẏp+1 ←

(
0 v

)
// Construct initial point for next instance

of (12) using backtracking line-search
Yp+1 ← LineSearch(Yp, Ẏp+1)

f∗
SDP ← tr

(
QŶ TŶ

)
;

// Project to feasible set of 10
X̂ ← RoundSolution(Ŷ );
return

{
X̂, f∗

SDP

}
;

is performed by computing the minimum eigenpair of a
certificate matrix. If verification fails, a saddle-escape [8]
step is performed to construct a rank-(p+1) initialization
using the second-order descent direction from minimum
eigenvalue, allowing the method to ascend to the next level
of the staircase.

However, implementing certifiable methods within the
above framework presents two main challenges. First, de-
signing appropriate convex relaxations is often problem-
specific and lacks a unified formulation. Second, develop-
ing optimization algorithms that can efficiently solve these
relaxations typically involves substantial manual effort, in-
cluding the custom design of solvers. Moreover, existing
implementations tend to lack modularity and code reusability,
making it difficult to adapt and deploy them across different
applications

IV. CERTIFIABLE FACTORS

In a nutshell, the central idea motivating this paper is
the observation that a broad class of state estimation tasks
involving ranging data, including mapping and localization,
can be formulated using a small set of factor and variable
types: relative rotation, relative translation, and point to
point range measurements. At the core of our approach is
the formulation of a certifiable estimation problem using
these certifiable factors, which are then optimized within
a standard factor graph solver. In the following subsec-
tions, we first review the measurement models for each of
these factors, and then describe how to relax them into
the lifted variables and factors used in the corresponding
Burer–Monteiro factorization (12).

A. Relative Rotation Measurement

A relative rotation describes the rotation necessary to align
the orientation of one coordinate frame with another; given
Ri, Rj ∈ SO(d), the relative rotation Rij from frame i to
frame j is then:

Rij ≜ R−1
i Rj (14)

In practice, we assume that (noisy) measurements R̃ij ∈
SO(d) of relative rotations Rij are sampled from the fol-
lowing probabilistic generative model:

R̃ij = Rijηij , ηij ∼ Langevin (Id, κij) (15)

where κij ≥ 0 is the precision of this measurement. The
negative log-likelihood function corresponding to (14) is
then:

lk

(
Ri, Rj ; R̃ij

)
= κij∥R⊤

i Rj − R̃ij∥2F
= κij∥Rj −RiR̃ij∥2F

(16)

The second equality follows from the invariance of the
Frobenius norm under orthogonal transformations. When
we apply Shor’s relaxation followed by Burer-Monteiro
factorization to a problem containing a relative rotation
measurement, the factor (16) is transformed to the following
lifted factor in the resulting Burer-Monteiro factorization
(12):

lk

(
Yi, Yj ; R̃ij

)
= κij∥Yj − YiR̃ij∥2F (17)

Here Yi, Yj ∈ St(p, d) are higher-dimensional lifts of the
original rotation variables Ri, Rj ∈ SO(d).

B. Relative Translation Measurement

A relative translation measures the location of a point
from the perspective of an observer in a given reference
frame. This measurement type can be used to construct both
pose-graph and pose-and-landmark formulations of SLAM.
Given a point tj in Rd and a coordinate frame xi =
(Ri, ti) ∈ SE(d), the relative translation of tj as measured
in frame xi is then:

tij ≜ R⊤
i (tj − ti) (18)



In practice, we assume the noisy measurements t̂ij ∈ Rd

of relative translations tij are sampled from the generative
model:

t̃ij = tij + ϵij , ϵij ∼ N
(
0, τ−1

ij Id
)

(19)

where τij ≥ 0 is the precision of relative translation mea-
surement.

lk
(
ti, tj ; t̃ij

)
= τij∥R⊤

i (tj − ti)− t̃ij∥22
= τij∥tj − ti −Rit̃ij∥22

(20)

The second equality follows from the invariance of the
Euclidean norm under orthogonal transformations. When
we apply Shor’s relaxation followed by Burer-Monteiro
factorization to a problem containing a relative rotation
measurement, the factor (20) is transformed to the following
lifted factor in the resulting Burer-Monteiro factorization
(12):

lk
(
ui, uj ; t̃ij

)
= τij

∥∥uj − ui − Yit̃ij
∥∥2
2

(21)

Here, ui, uj ∈ Rp represent the lifted translation variables,
and Yi ∈ St(p, d) is a corresponding lift of the rotation
variable Ri ∈ SO(d).

C. Range Measurement

Range measurements are point-to-point distance between
two positions. In practice, it can represent either the distance
between two poses or between a pose and a point (e.g., a
landmark). Given two points ti, tj ∈ Rd, the range between
them is:

rij ≜ ∥ti − tj∥2 (22)

In practice, we assume that this noisy measurement r̃ij is
sampled from the following probabilistic generative model:

r̃ij = rij + νij , νij ∼ N (0, σ2
ij) (23)

where σ2
ij is the variance of range measurement. The corre-

sponding factor of the measurement is given by:

lk (ti, tj ; r̃ij) =
1

σ2

(
∥tj − ti∥2 − r̃ij

)2 (24)

Note that (24) is not actually a quadratic function (due
to the presence of the unsquared norm). Nevertheless, a
technique proposed in [13], [20] enables us to rewrite (24)
as an equivalent QCQP by introducing an auxiliary unit
vector bij ∈ Sp−1 that effectively models the bearing from
point ti to tj . Applying Shor’s followed by Burer-Monteiro
factorization to this reformulation, we obtain the following
lifted factor:

lk (ui, uj , bij ; r̃ij) =
1

σ2
ij

∥uj − ui − r̃ijbij∥22 (25)

where ui, uj ∈ Rp.

V. EXPERIMENTS

In this section, we evaluate the performance of our factor
graph-based certifiable estimation approach on both synthetic
and real-world SLAM datasets. Concretely, we will apply our
approach to recover globally optimal solutions to rotation av-
eraging (RA) and pose-graph optimization (PGO) problems.

As a baseline for comparison, we compare the perfor-
mance of our approach with SE-Sync [8], a custom built,
highly optimized certifiable estimation algorithm specifically
designed for RA and PGO problems.

A. Implementation Details

Our method is implemented in GTSAM, with custom
variables and factors developed in C++. Optimization is
performed using the Levenberg–Marquardt algorithm with
a relative error tolerance of 10−5 with our minimum eigen-
value non-negativity tolerance was set 10−3. For initializa-
tion, each point Y ∈ St(p, d) and translation t ∈ Rp is
randomly sampled. In all experiments, the initial rank p0
is set to two above the ambient problem dimension. We
compare our results against SE-Sync in the RA (as SO-
Sync) and PGO (as translation-explicit) configurations. All
experiments were conducted on a laptop equipped with an
Intel Core i7-11800H processor and 32 GB of RAM, running
Ubuntu 20.04.

B. Rotation Averaging

In rotation averaging, one aims to determine the values of
rotations R1, ..., Rn ∈ SO(d), given a set of noisy measured
relative rotations R̃ij between them. This problem can be
modeled as a directed rotation graph G = (V, E), where
the vertex set V = [n] corresponds to the n unknown
rotations, and the edge set E ⊆ V×V represents the available
pairwise relative measurements. Under the assumption that
these measurements are sampled from the noise model (15),
the corresponding maximum likelihood estimation problem
is: Problem 1. (MLE formulation of RA).

min
Ri∈SO(d)

∑
(i,j)∈E

κij

∥∥∥Rj −RiR̃ij

∥∥∥2
F

(26)

Applying the results of Section IV-A, the lifted version
of Problem 1 solved at each instance of the Riemannian
Staircase is then:
Problem 2. (rank-p Burer-Monteiro factorization of RA)

min
Yi∈St(p,d)

∑
(i,j)∈E

κij

∥∥∥Yj − YiR̃ij

∥∥∥2
F

(27)

Table I presents the results for the Rotation Averaging
(RA) problem. Here, p represents the terminal rank for the
Riemannian Staircase (Algorithm 1) and total time includes
the optimization time as well as the initialization and verifi-
cation timing results of the algorithm. While we compare the
final objective values obtained by SE-Sync and our proposed
certifiable factors, our solutions are all verified to be globally
optimal, as detailed in Algorithm 1. Note that although
the objective values for the Parking Garage dataset differ



TABLE I: Results for Rotation Averaging on SLAM benchmark datasets

Objective Value Opt. Time (s) Total Time (s)
Dataset Vertices Edges SE-Sync [8] Ours SE-Sync [8] Ours SE-Sync [8] Ours p
MIT (2D) 808 827 3.881× 101 3.881× 101 0.01 0.11 0.02 0.13 4
CSAIL (2D) 1045 1171 2.231× 101 2.231× 101 0.02 0.10 0.02 0.13 4
Intel (2D) 1728 2512 3.639× 100 3.639× 100 0.02 0.15 0.03 0.23 4
Kitti 05 (2D) 2761 2827 2.338× 102 2.338× 102 0.06 0.31 0.06 0.62 4
Manhattan (2D) 3500 5451 6.195× 103 6.195× 103 0.07 0.35 0.09 0.73 4
Kitti 00 (2D) 4251 4679 4.646× 101 4.646× 101 0.07 0.61 0.09 1.08 4
Kitti 02 (2D) 4661 4704 6.375× 101 6.375× 101 0.11 0.81 0.12 1.29 4
City10000 (2D) 10000 20687 2.172× 102 2.172× 102 0.30 3.61 0.36 2.06 4
Ais2klinik (2D) 15115 16727 4.683× 101 4.683× 101 0.44 3.49 0.48 8.48 4
SmallGrid (3D) 125 297 4.850× 102 4.850× 102 0.01 0.10 0.01 0.10 5
Parking Garage (3D) 1661 6275 1.692× 10−3 1.733× 10−3 0.04 0.36 0.05 0.54 5
Sphere (3D) 2500 4949 8.854× 102 8.854× 102 0.23 2.42 0.26 2.82 5
Torus (3D) 5000 10000 1.219× 104 1.219× 104 0.46 4.35 0.54 5.83 5
Cubicle (3D) 5750 7696 1.083× 102 1.084× 102 0.43 2.83 0.50 4.76 5
Grid (3D) 8000 22236 4.195× 104 4.195× 104 2.17 157.09 3.33 162.02 5
Rim (3D) 10093 18637 1.527× 103 1.527× 103 0.99 9.92 1.14 16.16 5

TABLE II: Results for Pose Graph Optimization on SLAM benchmark datasets

Objective Value Opt. Time (s) Total Time (s)
Dataset Vertices Edges SE-Sync [8] Ours SE-Sync [8] Ours SE-Sync [8] Ours p
MIT (2D) 808 827 6.115× 101 6.115× 101 0.27 0.28 0.28 0.33 4
CSAIL (2D) 1045 1171 3.170× 101 3.170× 101 0.07 0.16 0.08 0.22 4
Intel (2D) 1728 2512 5.235× 101 5.235× 101 0.63 1.00 0.64 1.17 4
Kitti 05 (2D) 2761 2827 2.765× 103 2.765× 103 1.01 0.70 1.02 1.12 4
Manhattan (2D) 3500 5451 6.431× 103 6.431× 103 0.65 1.15 0.67 1.87 4
Kitti 00 (2D) 4251 4679 1.257× 102 1.257× 102 4.97 1.07 4.99 2.33 4
Kitti 02 (2D) 4661 4704 1.084× 102 1.084× 102 10.16 1.52 10.19 2.79 4
City10000 (2D) 10000 20687 6.386× 102 6.386× 102 16.27 11.41 16.36 16.64 4
Ais2klinik (2D) 15115 16727 1.886× 102 1.886× 102 699.90 25.13 699.97 37.74 4
SmallGrid (3D) 125 297 1.025× 103 1.025× 103 0.05 0.11 0.05 0.12 5
Parking Garage (3D) 1661 6275 1.263× 100 1.263× 100 105.87 2.57 105.90 2.89 5
Sphere (3D) 2500 4949 1.687× 103 1.687× 103 2.11 4.04 2.16 4.74 5
Torus (3D) 5000 10000 2.423× 104 2.423× 104 1.56 17.09 1.69 19.74 5
Cubicle (3D) 5750 7696 7.171× 102 7.171× 102 15.02 13.74 15.15 17.25 5
Grid (3D) 8000 22236 8.432× 104 8.432× 104 13.00 919.53 15.76 927.42 5
Rim (3D) 10093 18637 5.461× 103 5.461× 103 126.84 63.19 127.138 73.90 5

slightly, all final solutions are successfully certified through
the verification step. As shown, our approach consistently
achieves the same globally optimal solutions as SE-Sync
in all RA datasets. For runtime comparisons, we evalu-
ate our inexact–Newton-based Levenberg–Marquardt method
against SE-Sync, which employs Riemannian trust region
solver. SE-Sync consistently achieves faster runtime across
all RA datasets. This outcome is expected, as SE-Sync is
specifically tailored for optimizing RA problems.

C. Pose Graph Optimization
Similarly, in pose-graph optimization, one aims to deter-

mine the values of the poses x1, x2, . . . , xn ∈ SE(d), when
given a set of noisy relative motions x̃ij ∈ SE(d) between
them. Note each pose xi consists of a rotation component
Ri ∈ SO(d) and a translation component ti ∈ Rd, i.e., xi =
(Ri, ti) and that each measurment x̃ij contains the translation
t̃ij and the rotation R̃ij measurements respectively. It is
modeled as a directed pose graph G = (V, E), where the
vertex set V = [n] corresponds to the unknown poses, and
the edge set E ⊆ V × V represents the available relative
measurements. Under the assumption that these measure-
ments are sampled from the noise model (15) and (19), the

corresponding maximum likelihood estimation problem is:
Problem 3 (MLE formulation of PGO).

min
Ri∈SO(d)

ti∈Rd

∑
(i,j)∈E

κij

∥∥∥Rj −RiR̃ij

∥∥∥2
F
+ τij

∥∥tj − ti −Rit̃ij
∥∥2
2

(28)
where d is the dimension of the problem (e.g., 2D or 3D)

and n is the number of pose variables.
Applying the results of Section IV-B, the lifted version
of Problem 3 solved at each instance of the Riemannian
Staircase is then:
Problem 4 (rank-p Burer-Monteiro factorization of PGO).

min
ti∈Rp, Yi∈St(p,d)

∑
(i,j)∈E

κij

∥∥Yj − YiR̃ij

∥∥2
F

+ τij
∥∥ tj − ti − Yit̃ij

∥∥2
2

(29)

Table II summarizes the results for the Pose Graph Opti-
mization (PGO) problem. Here again, p represents the final
rank for the Riemannian Staircase (Algorithm 1) and total
time includes the optimization time as well as the initializa-
tion and verification timing results of the algorithm. Similar
to the Rotation Averaging (RA) results, our method achieves



the same verifiably globally optimal solutions as SE-Sync
across all evaluated datasets, with verification confirming
the global optimality guarantees of the proposed certifiable
factors. The runtime analysis for PGO reveals that neither
method consistently outperforms the other across all datasets.
Performance varies depending on the dataset’s structure and
origin. Notably, SE-Sync demonstrates slower performance
on real-world datasets such as Parking Garage, Rim,
and Ais2klinik, whereas our approach exhibits the high-
est runtime on the synthetic Grid3D dataset. We see faster
optimization times on certain datasets however our method’s
longer initialization times mean it still trails SE-Sync in total
runtime.

VI. CONCLUSIONS

In this work, we show how one can easily implement
and deploy certifiable estimators using existing factor-graph
modeling and optimization libraries (such as GTSAM). Our
contribution lies in providing a simplified, modular, and
practical approach to solving these Riemannian optimization
problems directly within the factor graph framework. We pro-
pose lifted versions of the variable and factor types that arise
in the rank-p Burer–Monteiro factorization, as commonly
encountered in state-of-the-art certifiable robotic mapping
and localization problems, including rotation averaging, pose
graph optimization, landmark-based SLAM, and range-aided
SLAM. The effectiveness and optimality of the proposed
method are validated through extensive comparisons against
state-of-the-art certifiable solvers on both synthetic and real-
world SLAM datasets. Future work will explore extending
the proposed certifiable factors to a broader class of robotic
state estimation problems.
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